徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

土星環

指数 土星環

土星環是太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是水冰,還有一些塵埃和其它的化學物質。 雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。在1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。在1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。 雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。 在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環。.

84 关系: 升华史匹哲太空望遠鏡双筒望远镜同心 (幾何)塵埃天王星環天文期刊太阳系威廉·拉塞尔小行星小衛星 (天文)巴黎天文台希腊神话乔凡尼·多美尼科·卡西尼伽利略·伽利莱弗吉尼亚大学彗星微隕石微流星體後期重轟炸期土卫十土卫八土卫六土衛四十九土星土星的卫星土星環國際天文聯會利克天文台哈勃空间望远镜冰火山先驱者11号光深度克里斯蒂安·惠更斯皮埃尔-西蒙·拉普拉斯矽酸鹽磁层神祇离子红外线纵波美國天文學會美國科學促進會美国国家航空航天局無線電掩星熱失控牛顿万有引力定律螺旋星系行星...行星环视星等詹姆斯·克拉克·麦克斯韦麗亞環軌道軌道傾角黄道轨道共振航天动力学航海家計畫赤道闪电肉眼自然 (期刊)英国广播公司進動MaxwellScience (journal)掩星恩克椭圆正回饋洛希極限潮汐力木星環望远镜星云海王星環旅行者1号愛德華·洛希托林 (天文学)托斯卡纳晝夜平分點 扩展索引 (34 更多) »

升华

昇華是指一种物质从固态不经过液态直接转化为气态的过程,是物质在温度和气压低于三相点的时候发生的一种物态变化。 与昇華相反的过程称做凝華,指物质从气态直接变成固态。這樣的例子有結霜。 昇華是吸熱的反應,所需的焓是汽化熱和熔化热之和。.

新!!: 土星環和升华 · 查看更多 »

史匹哲太空望遠鏡

斯皮策空间望远镜(Spitzer Space Telescope,缩写为SST),是美國國家航空暨太空總署2003年发射的一颗红外天文卫星,是大型轨道天文台计划的最后一台空间望远镜。.

新!!: 土星環和史匹哲太空望遠鏡 · 查看更多 »

双筒望远镜

双筒望远镜(或直接簡稱雙筒鏡,也稱之為野外鏡)是将两个相同的或者镜像对称的望远镜并排連在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可透过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。雙筒鏡也可以成由兩個短的折射望遠鏡組合,用於觀看遙遠目標的設備。 最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增大物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用稜镜来呈现一个正像。 大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三腳架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25公里以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亞利桑那州的大雙筒望遠鏡(Large Binocular Telescope,LBT)。.

新!!: 土星環和双筒望远镜 · 查看更多 »

同心 (幾何)

在幾何學裏,同心的物體的中心或中心軸都在同一位置。圓圈、圓球、圓柱、圓環,都可以是同心的。稱同心的圓圈為同心圓,同心的圓球為同心球,同心的圓柱為同心柱,同心的圓環為同心環。 假設,兩個同心圓的半徑分別為 r_1 與 r_2 ,則兩個同心圓的圓周比是 兩個同心圓的面積比是 假設,兩個同心球或同心環的半徑分別為 r_1 與 r_2 ,則面積比是 容積比是 假設,兩個同心柱的半徑分別為 r_1 與 r_2 ,則面積比與容積比是.

新!!: 土星環和同心 (幾何) · 查看更多 »

塵埃

塵埃可以指:.

新!!: 土星環和塵埃 · 查看更多 »

天王星環

天王星環是由直徑小於10米的黑暗顆粒物質組成的暗淡環系統,是繼土星環之後,在太陽系內第二個被人類發現的行星環系統。 已知的13個清晰的環中,最亮的是ε環。(re study by Stuart Eves).

新!!: 土星環和天王星環 · 查看更多 »

天文期刊

天文期刊(Astronomical Journal,AJ)是由美國天文學會委託英國物理學會出版社發行的科學期刊。這是目前世界上最重要的幾個天文學期刊。2008年以前是由美國天文學會委託芝加哥大學出版社出版。2009年1月起才更改。另外兩個重要的天文學期刊,天文物理期刊和天文物理期刊增刊系列也在2009年1月改由英國物理學會出版社出版。.

新!!: 土星環和天文期刊 · 查看更多 »

太阳系

太陽系Capitalization of the name varies.

新!!: 土星環和太阳系 · 查看更多 »

威廉·拉塞尔

威廉·拉塞尔(,),英国天文学家,出生于博尔顿。拉塞尔早年曾从事啤酒酿造行业,积聚了不少财富,从而可以毫无顾虑的发展其对天文学的爱好。他在利物浦附近建立了一座天文台,配备有一架24英寸(610毫米)反射望远镜——就是在这架望远镜上,拉塞尔开创性的使用了利用赤道仪追踪天体的简易方法。同时他还使用自己设计的仪器亲自磨制、抛光望远镜镜片。.

新!!: 土星環和威廉·拉塞尔 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 土星環和小行星 · 查看更多 »

小衛星 (天文)

小衛星是針對特別小的天然衛星不拘形式的一個項目。在天文學的文獻中,它至少已經使用在兩種場合內:.

新!!: 土星環和小衛星 (天文) · 查看更多 »

巴黎天文台

巴黎天文台(Observatoire de Paris)位于法国首都巴黎,是法国的国立天文台,在巴黎、墨东、南賽(Nançay)等地建有观测基地。 巴黎天文台是法国国王路易十四根据海军国务大臣让-巴普蒂斯特·柯尔贝尔的建议于1667年开始建立的,1671年完工,首任台长是法国著名天文学家卡西尼,他曾在这里发现了土星的四个卫星(土卫八、土卫五、土卫四、土卫三)、卡西尼环缝、木星的较差自转、大红斑,解释了黄道光的成因。 1679年,巴黎天文台出版了世界上第一部天文年历,利用木星卫星的掩食帮助船舶测定经度。1863年,天文台出版了第一份现代意义上的气象图。1913年9月,巴黎天文台用埃菲尔铁塔做天线,接收美国海军天文台发出的无线电信号,精确测定了两地的经度差。巴黎天文台还是国际时间局的所在地,直到国际时间局于1987年解散。.

新!!: 土星環和巴黎天文台 · 查看更多 »

希腊神话

希臘神話(希腊语:ἡ Ἑλληνικὴ Μυθολογία)即口頭或文字上一切有關古希臘人的神、英雄、自然和宇宙歷史的神話。希臘神話是古希臘宗教的組成部分之一。現代的學者更傾向於研究神話,因為其實際上反映了古希臘的宗教和政治制度、文明以及這些神話產生的本質原因。一些神學家甚至認為古希臘人創造這些神話是為了解釋他們所遇到所有的事件。 希臘神話涵及大量傳說故事,其中很多都通過希臘藝術品來表現,比如古希臘的陶器繪畫和浮雕藝術。這些傳說意在解釋世界的本源和講述眾神和英雄們的生活和冒險以及對當時的生物的特殊看法。這些神話開始於口耳相傳,今日所知的希臘神話或傳說大多來源於古希臘文學。已知的最早的古希臘文學作品有荷馬的敘事史詩《伊利亞特》和《奧德賽》,著重描寫了和特洛伊戰爭相關的重大事件。基本上和荷馬是同時期的赫西俄德的兩部詩歌《神譜》和《工作與時日》包含了當時的學者對世界起源、神權統治和人類時代的延續以及人類疾苦和祭祀活動的起源的看法和認識。除了《荷馬史詩》之外,還可以從《》(抒情詩,公元前5世紀的悲劇作品)、希臘化時期的學術作品和詩歌以及羅馬帝國時期的作品,如普魯塔克和保薩尼亞斯的作品中發現希臘神話的踪跡。 現在希臘神話已經從很多藝術品上關於眾神和英雄故事的裝飾得到考古學上證明。公元前8世紀的陶器上的幾何設計鮮明地記錄特洛伊圍城的場景和赫拉克勒斯的冒險。在隨後的古風時期、古典希臘時期以及希臘化時期,大量得到了文學上的證據證明神話場景不斷湧現。 希臘神話對西方文化、藝術、文學和語言有著明顯而深遠的影響。從古希臘時期到現代,詩人和藝術家很多都從希臘神話中獲得靈感,並為其賦予現代意義。.

新!!: 土星環和希腊神话 · 查看更多 »

乔凡尼·多美尼科·卡西尼

乔凡尼·多美尼科·卡西尼(意大利文:Giovanni Domenico Cassini,),法文名让-多米尼克·卡西尼(Gian Domenico Cassini或Jean-Dominique Cassini),是一位在熱那亞共和國(今意大利境內)出生的法国籍天文学家和水利工程师。 卡西尼1625年出生于熱那亞共和國的佩里納爾多(即今意大利因佩里亞省佩里納爾多),在1648年至1669年期間曾在旁扎诺天文台工作。1640年起,担任博洛尼亚大学天文学教授,並在1671年巴黎天文台落成后成為该台的第一任總監直到去世。1673年加入法国国籍,改名为法文,即让-多米尼克·卡西尼,又称卡西尼一世(Cassini Ier,其曾孙与其同名,称卡西尼二世)。 卡西尼被认为与胡克同时发现了大红斑(1665年)。卡西尼是第一个发现土星的四个卫星(土卫八、土卫五、土卫四、土卫三)的人。1690年,他在觀測木星的大氣層時發現木星赤道旋轉得比兩極快,因此發現了木星的較差自轉。1675年,他发现土星光环中间有条暗缝,这就是后来以他名字命名的著名的卡西尼环缝。他猜测,光环是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测。1671年到1679年,他仔细观测了月球的表面特征,1679年送呈法国皇家科学院一份大幅月面图,在一个多世纪内始终没人能在这方面超过他。1683年3月起,卡西尼研究了黄道光,认为它是由于行星际尘埃反射太阳光引起的,不属于大气现象。 卡西尼是一位保守的天文学家,他拒绝接受哥白尼的日心说,也反对开普勒定律、艾萨克·牛顿的万有引力定律和光速有限说。卡西尼於1711年失明,次年(1712年)逝世于法国巴黎。除了天文學的貢獻以外,他亦曾被教宗委任治理波河的防治、管理及防汛工程。 当代人类探测土星的探测器“卡西尼号”即以他的名字命名。.

新!!: 土星環和乔凡尼·多美尼科·卡西尼 · 查看更多 »

伽利略·伽利莱

伽利略·伽利莱(Galileo Galilei, ;)Drake(1978, p.1).伽利略出生日期用的是儒略曆,當時所有基督教國家都使用這個曆法。義大利及幾個天主教國家於1582年改用公曆。除非特別註明,條目中的日期皆為公曆。,義大利物理學家、數學家、天文學家及哲學家,科學革命中的重要人物。其成就包括改進望遠鏡和其所帶來的天文觀測,以及支持哥白尼的日心说。伽利略做实验证明,感受到引力的物体并不是呈等速運動,而是呈加速度運動;物體只要不受到外力的作用,就會保持其原來的靜止狀態或勻速運動狀態不變。他又發表惯性原理阐明,未感受到外力作用的物体会保持不变其原来的静止状态或匀速运动状态。伽利略被譽為“現代觀測天文學之父”、“現代物理學之父”、“科學之父”及“現代科學之父”。Finocchiaro (2007).

新!!: 土星環和伽利略·伽利莱 · 查看更多 »

弗吉尼亚大学

弗吉尼亚大学(英文:University of Virginia,U.Va.或UVA)是由托马斯·杰斐逊于美国弗吉尼亚州的夏律第鎮创建的一所公立研究型大学。三位美国总统(杰斐逊,麦迪逊和门罗)为其最初校董会成员。该校为最初的八所公立常春藤成员,其校区曾是北美唯一名列联合国教育科学文化组织世界遗产名單的高等院校校区。在美国历史上,弗吉尼亚大学以其首创建筑,天文和哲学等学术领域而著称,同时她也是第一所将教育独立于教会的高校。该校工程和应用科学学院为全美第一所附属于大学的工程学院。 在2017年美国新闻与世界报道公布的大学排名中,弗吉尼亚大学位列公立大学全美第二,与加州大学洛杉矶分校并列,仅次于加州大学伯克利分校。.

新!!: 土星環和弗吉尼亚大学 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 土星環和彗星 · 查看更多 »

微隕石

微隕石是在地球表面收集到來自地球之外的小天體,大小範圍從50微米至2毫米。微隕石是進入地球大氣層而倖存下來的流星塵。它們從大小、組成都與隕石不同,並且數量、種類更為豐富,其中也包括較小的星際塵埃的顆粒(IDPs) ,是宇宙塵的一部分。流星體以高速(至少11Km/s)進入地球的大氣層,經過加熱和大氣的磨擦和壓縮。目前已經在地球上蒐集到,來自地球之外個別微隕石的質量在10−9和 10−4公克之間 。 弗雷德·惠普爾首先創造了微隕石這個名稱來描述落在地球上如灰塵大小的天體 。有時,隕石和微隕石在進入地球大氣層時是被看見的流星,但不論它們能否墬落到地球表面被找到,隕石和微隕石依然都存在著。.

新!!: 土星環和微隕石 · 查看更多 »

微流星體

微流星體是微小的流星體,是在太空中的微小固體,通常質量不到1公克。微隕石是穿越地球的大氣層之後依然存在,並到達地球表面的這種物體。.

新!!: 土星環和微流星體 · 查看更多 »

後期重轟炸期

後期重轟炸期,又名月球災難,又稱晚期重轟炸,是指約於41億年前至38億年前,即於地球地質年代中的冥古宙及太古宙前後,推斷在月球上發生不成比例的大量小行星撞擊的事件,在地球、水星、金星及火星亦同樣發生。這個事件的證據主要是基於在月球取得的樣板的測年結果,大部份隕擊熔岩都是在一段相當短的時間內形成。有很多的假說嘗試解釋進入太陽系內側的小行星或彗星碎片的成因,但卻仍未有共識。其中一個著名的理論是指當時類木行星正進入軌道,引力將在小行星帶或古伯帶的物體拋入同心軌跡並撞向類地行星。雖然如此,有些爭議指這些月球樣板的數據並不一定來自這種災難事件,而測年的結果聚集在同一段時間是因在同一的撞擊盆地取樣所致。.

新!!: 土星環和後期重轟炸期 · 查看更多 »

土卫十

土卫十又稱為「傑努斯」(S/1980 S 1, Janus),是环绕土星运行的一颗卫星。它绕土星一周约需要一年半的时间,自转一周需要9小时。 曾經被錯認為另一個衛星「泰美斯」,不過最後確認「泰美斯」和土衛十是同一個衛星。.

新!!: 土星環和土卫十 · 查看更多 »

土卫八

土卫八又稱為「伊阿珀托斯」(Iapetus或Japetus,希腊语:Ιαπετός),是土星的第3大卫星,同时也是太阳系中的第11大卫星,由乔凡尼·多美尼科·卡西尼于1671年发现。土卫八以其两半球面巨大的颜色差异而著称,而卡西尼号最近的发现则揭示了该卫星其他多处不寻常的特征,如其拥有一个环绕球体半圈的赤道脊。.

新!!: 土星環和土卫八 · 查看更多 »

土卫六

土卫六又稱為「泰坦」(Titan),是环绕土星运行的一颗卫星,是土星卫星中最大的一个,也是太陽系第二大的衛星。荷兰物理学家、天文学家和数学家克里斯蒂安·惠更斯在1655年3月25日发现它,也是在太阳系内继木星伽利略卫星後发现的第一颗卫星。由於它是太陽系第一颗被发现擁有濃厚大氣層的衞星,因此被高度懷疑有生命體的存在,科學家也推測大氣中的甲烷可能是生命體的基礎。土衛六可以被視為一個時光機器,有助我們了解地球最初期的情況,揭開地球生物如何誕生之謎。.

新!!: 土星環和土卫六 · 查看更多 »

土衛四十九

土衛四十九是土星的衛星之一,位置介符土衛一及土衛二之間。原有編號為S/2007 S 4,英文稱(Anthe),該詞取自希腊神話阿尔库俄尼得斯(Alkyonides),詞義為花。土衛四十九由 於2007年5月30日發現,但該衛星早於2004年6月由卡西尼號太空船所探索,最後在2007年7月18日首次向外公佈。土衛四十九每隔兩年受到土衛一明顯的擾動平均經度共振所影響,平穩密切軌道在軌道半長軸有約20公里的分子隨振幅度。使鄰近的土衛三十二及土衛三十三會產生共振。.

新!!: 土星環和土衛四十九 · 查看更多 »

土星

土星,為太陽系八大行星之一,至太阳距离(由近到远)位於第六、体积則僅次於木星。並與木星、天王星及海王星同属氣體(類木)巨星。古代中国亦称之填星或鎮星。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自希臘/羅馬神話传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自于羅馬神話中的农业之神萨图尔努斯(拉丁文:Saturnus),其他的还有希臘神話中的克洛諾斯(泰坦族,宙斯的父親,一说其在罗马神话中即萨图尔努斯)、巴比倫神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符號是代表农神萨图尔努斯的鐮刀(Unicode: )。 土星主要由氫組成,還有少量的氦與微痕元素,內部的核心包括岩石和冰,外圍由數層金屬氫和氣體包覆著。最外層的大氣層在外观上通常情况下都是平淡的,雖然有时会有長时间存在的特徵出現。土星的風速高達1,800公里/時,明顯的比木星上的風快速。土星的行星磁場強度介於地球和更強的木星之間。 土星有一個顯著的環系統,主要的成分是冰的微粒和較少數的岩石殘骸以及塵土。已經確認的土星的衛星有62顆。其中,土卫六是土星系統中最大和太陽系中第二大的衛星(半徑2575KM,太陽系最大的衞星是木星的木衛三,半徑2634KM),比行星中的水星還要大;並且土卫六是唯一擁有明顯大氣層的衛星。.

新!!: 土星環和土星 · 查看更多 »

土星的卫星

土星擁有62顆已確定軌道的天然衛星,其中52顆已命名,大部分體積都很小。另外還有幾百顆已知的“小衛星”,位於土星環內。有7顆衛星的質量足夠大,其重力使其坍縮成近球體形狀(因此若它們是直接環繞太陽公轉,則會歸為矮行星)。土星不但擁有複雜的環系統,其衛星系統也是太陽系中最多種多樣的。特別值得一提的有土衛六,它是太陽系第二大衛星,而且有著類似於地球的大氣層、液態碳氫化合物的湖泊、河流和降雨;另有土衛二,其南極地區底下很可能有液態水。 土星衛星之中有23顆為“規則衛星”,其順行的軌道和土星赤道平面的傾斜度並不高。當中有7顆大衛星、4顆與較大衛星共有軌道的特洛依衛星和一對共軌衛星。最後,兩顆衛星的軌道是在土星環縫中。這些規則衛星都以泰坦巨人族或其他與農神薩圖爾努斯相關的神祇之名來命名。 其餘的38顆較小衛星均為“不規則衛星”,其軌道距離土星更遠,軌道傾角更高,包括順行及逆行衛星。它們很可能是引力捕捉來的微型行星,或是微型行星分裂後的殘餘物,形成各個撞擊衛星群。這些不規則衛星根據軌道特性分爲:因紐特衛星群、諾爾斯衛星群、高盧衛星群,其名稱選自相關神話。 土星環由冰體組成,體積從顯微鏡程度到幾百米不等,各自有著自己圍繞土星的軌道。土星並沒有一個確切的衛星數目,因爲在組成環系統的小物體和被標誌為衛星的大物體之間並沒有明確的界限標準。根據量度對鄰近物質的干擾,至少有150顆位於環以內的“小衛星”被發現,但人們相信這只是總數的一小部分。 確認的衛星會由國際天文聯會賦予永久命名,包括名稱和羅馬數字。1900年之前發現的9顆衛星(土衛九是唯一一顆不規則衛星)以其距離土星的距離編號,而其餘的以其得到永久命名的順序編號。.

新!!: 土星環和土星的卫星 · 查看更多 »

土星環

土星環是太陽系行星的行星環中最突出與明顯的一個,環中有不計其數的小顆粒,其大小從微米到米都有,軌道成叢集的繞著土星運轉。環中的顆粒主要成分都是水冰,還有一些塵埃和其它的化學物質。 雖然環的反射能夠增加土星的視星等(亮度),但從地球僅憑肉眼還是看不見環。在1610年,當望遠鏡第一次指向天空之際,伽利略雖然未能清楚的看出環的本質,但他還是成為觀察土星環的第一個人。在1655年,惠更斯成為第一個描述環是環繞土星的盤狀物的人。 雖然許多人都認為土星環是由許多微細的小環累積而成的(這個觀念可以回溯至拉普拉斯),並有少數真實的空隙。更正確的想法是這些環是有著同心但是在密度和亮度上有著極值的圓環盤。在叢集的尺度上,圓環之間有許多空洞的空間。 在環的中間有一些空隙:有兩條已經知道是與被埋藏在環中的衛星產生軌道共振引起的波動造成的,其它的空隙還不知道成因。穩定的共振,另一方面,也維繫了一些環長期的存在,像是泰坦環。.

新!!: 土星環和土星環 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

新!!: 土星環和國際天文聯會 · 查看更多 »

利克天文台

利克天文台(Lick Observatory)位于美国加利福尼亚州圣荷西市的东部,汉密尔顿山的山顶上,海拔4209英呎,由聖塔克魯茲加利福尼亞大學管理。 利克天文台是世界上首个建于山顶的永久性台址,使用美国富豪詹姆斯·利克的遗产,建造于1876年至1887年间。1887年,利克的遗体安葬在口径36英寸(91厘米)的折射望远镜的基座下面,这台望远镜被命名为詹姆斯·利克望远镜。1888年1月3日,利克望远镜开光,是当时世界上最大的折射望远镜。直到1897年这一纪录才被叶凯士天文台打破。1888年4月,利克天文台移交给加利福尼亚大学董事会管辖,成为世界上首个建于山顶的永久天文台。首任台长是爱德华·霍顿。1898年,詹姆斯·基勒担任天文台的第二任台长。 随着圣荷西的日益繁华,光污染逐渐开始对天文台的观测工作造成影响。1980年代,圣荷西的路灯全部改用低压钠灯,这种灯的灯光容易用望远镜上的滤光片去除。为了感谢圣荷西在降低光害方面所做的努力,利克天文台发现的第6216号小行星命名为“圣荷西”。 利克天文台的主要观测设备有:.

新!!: 土星環和利克天文台 · 查看更多 »

哈勃空间望远镜

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。.

新!!: 土星環和哈勃空间望远镜 · 查看更多 »

冰,也就是凍結成固態的水。取決於冰內含的雜質(如土壤或氣泡顆粒),冰可以是透明的、或著帶有一點不透明的藍白色。 在太陽系中冰的含量非常豐富。從最接近太陽的水星,到離太陽極遠的歐特雲,都會生成冰。在太陽系以外的地方,英文稱“凍結成固態的水”為"interstellar ice"(星際冰)。冰在地球表面存量極大 - 尤其是在極地地區和雪線以上- 而且,作為地表沉澱物和沉積物的一種常見形式,冰在地球的水循環和氣候上起著關鍵的作用。它可能以雪花、冰雹、霜、冰錐或冰柱......等形式出現。 冰分子可依溫度和壓力,表現出高達十六種不同的形態(分子堆疊形狀)。當水被迅速冷卻後,根據其經過的壓力和溫度,可生成多達三種不同型態的“冰”。當水慢慢冷卻,到達20K以下(約−253.15℃)時,量子穿隧效應可能引起宏觀的量子現象。幾乎所有在地球表面和大氣層裡的冰,都是六角形晶體結構; 相較之下,地表只會產生微量的立方體形冰。其中最常見的生成方式為:當液態水在標準大氣壓(1atm)下冷卻到低於0°C(273.15K,32°F)時,產生六角形晶體冰。冰也可通過水蒸汽直接沉積(凝華),如霜的形成就是一個很好的例子。從冰變成水的過程被稱為熔化,而從冰直接變成水蒸的過程則被稱為昇華。 冰在各種地方都被廣泛地運用著,包括製冷、冬季運動、和做成冰雕等。.

新!!: 土星環和冰 · 查看更多 »

冰火山

冰火山(拉丁文作 cryovolcano,字面涵義即爲cryo-:冰和 volcano:火山),是存在於地外天體上的與火山相似的一種地貌,通常出現在冰凍衛星或是其他一些低溫(表面溫度低於-150 °C)的天體上(如柯依伯帶上的天體)。與火山不同的是,冰火山不會噴發熔岩,它所噴發出的是水、氨、甲烷一類的揮發物。這類噴發物按「冰火山」類推而稱作冰岩漿(cryomagma)。冰岩漿在噴發時通常呈液態而四下流淌,但亦有可能呈氣態彌散爲煙霧。噴發後,冰岩漿會因暴露在溫度極低的環境中而凝結成固體。一些科學家估計土星的最大衛星土衛六上的冰火山有條件爲可能存在的地外生命提供庇護。.

新!!: 土星環和冰火山 · 查看更多 »

先驱者11号

先驱者11号(Pioneer 11)是第二个用来研究木星和外太阳系的空间探测器。它也是去研究土星和它的光环的第一个探测器。与先驱者10号不同的是,先驱者11号(也称做先驱者G号)不仅拜访木星。它还用了木星的強大引力去改变它的轨道飞向土星。它靠近土星后,就顺着它的逃离轨道離開太阳系。 探測器在1973年4月6日,位於佛羅里達州的卡納維爾角發射。探測器全長2.9米,設有一个直徑2.74米的高增益天線,在其之前再裝上一个中增益天線。至於另外一條全方位低增益天線則裝設於高增益天線接收器之下。探測器以兩個放射性同位素熱電機(RTG)作為能源,在拜訪木星時仍能產生144 瓦特,但到達土星時只能產生100 瓦特的功率。 探測器上還設有三個感應器:恆星(老人星)感應器及兩個太陽感應器,藉以根據相對於地球及太陽的位置,及以老人星的位置作後備,用以計算探測器的位置。先鋒11號的恆星感應器及起點設定,是按先鋒10號的經驗而被重新修改的。探測器上的三對火箭推進器,負責控制轉軸(4.8rpm)及為探制器提供動力。三對火箭推進器都可以按指令持續燃點,或暫停燃點亦可。 在探測器上的儀器負責研究星際間及行星的磁場太陽風、宇宙射線、太陽圈的轉變區域、大量存在的中性氫;星塵粒子的分佈、大小、質量、通量及速度;外太陽系行星極光、電波、其衛星的大氣層;以及木星與土星及其衛星的表面等等。 以上的研究主要由探測器上的磁力計、等離子分析器(太陽風專用)、粒子感測器、離子感測器、一具可以重疊不同視點來探測由經過的隕石折射而來的陽光的非影像望遠鏡、一些已密封並加壓的氬氣及氮氣用以計算隕石的滲透、測紫外光計、測紅外光計、及一具影像光偏計用以拍攝照片及計算光偏振等等。至於進一步的數據則從天體力學及掩星法現象去計算出來。.

新!!: 土星環和先驱者11号 · 查看更多 »

光深度

光深度是透明度的測量,在定義上是輻射或光在傳輸路徑上被散射或吸收的比率。為了讓光深度更加形象化,可以想一想霧。在觀測者和物體之間的霧會立刻使得你前方的光深度為零。當物體遠離時,光深度將會增加,直到該物體遠至不能被看見為止。.

新!!: 土星環和光深度 · 查看更多 »

克里斯蒂安·惠更斯

克里斯蒂安·惠更斯(Christiaan Huygens,),荷兰物理学家、天文学家和数学家,土卫六的发现者。他还发现了猎户座大星云和土星光环。.

新!!: 土星環和克里斯蒂安·惠更斯 · 查看更多 »

皮埃尔-西蒙·拉普拉斯

埃尔-西蒙·拉普拉斯侯爵(Pierre-Simon marquis de Laplace,),法国著名的天文学家和数学家,他的工作对天体力学和统计学有举足轻重的发展。.

新!!: 土星環和皮埃尔-西蒙·拉普拉斯 · 查看更多 »

矽酸鹽

化學上,矽酸鹽指由矽和氧組成的化合物(SixOy),有時亦包括一或多種金屬和或氫。它亦用以表示由二氧化矽或矽酸產生的鹽。 在普通情況下,最穩定的矽化合物是二氧化矽(SiO2)——俗稱石英,和類似的化合物。二氧化矽經常有微量的矽酸(H4SiO4)處於平衡狀態。化學家認為石英是不可溶解的,但在長時間尺度下,它是可以流動的。此外,在鹼性條件下,會出現H2SiO42−。大部分矽酸鹽都是不可溶解的。 矽酸鹽礦物的特徵是它們的正四面體結構,有時這些正四面體以錬狀、雙鍊狀、片狀、三維架狀方式連結起來。按正四面體聚合的程度,矽酸鹽再細分為:島狀矽酸鹽類、環狀矽酸鹽類等。 在地質學和天文學上,矽酸鹽指一種由矽和氧組成的岩石(通常為SiO2或SiO4),有時亦包括一或多種金屬和或氫。此類岩石包括花崗岩及輝長岩等。地球及其他類地行星的大部分地殼均以矽酸鹽組成。.

新!!: 土星環和矽酸鹽 · 查看更多 »

磁层

磁層是一个天体周围、以该天体的磁场为主的地区。地球、木星、土星、天王星和海王星的周围均有磁層。火星仅有局部的磁场,因此不能形成一个磁層。除此之外其它拥有磁场的天体如脉冲星也有磁層。.

新!!: 土星環和磁层 · 查看更多 »

神祇

#重定向 神.

新!!: 土星環和神祇 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 土星環和离子 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

新!!: 土星環和红外线 · 查看更多 »

纵波

纵波,又稱為疏密波,是指在传播介质中质点的振动方向与波的传播方向平行的一类波,形成的波是疏密相間的波形。.

新!!: 土星環和纵波 · 查看更多 »

美國天文學會

美國天文學會(American Astronomical Society,縮寫為AAS)是由美國專業的天文學家和有興趣的個人組成的天文團體,總部設在華盛頓特區。美國天文學會成立的首要目標是要將天文學和其他領域的科學緊密結合,其次是要經由政治上的遊說,讓成員在國會殿堂上發聲,和基層的活動提升天文教育。.

新!!: 土星環和美國天文學會 · 查看更多 »

美國科學促進會

美國科學促進會(American Association for the Advancement of Science,缩写为AAAS),創建於1848年9月20日,是世界最大的非營利科學組織,下設21個專業分會,所涉包括數學、物理学、化學、天文学、地理学、生物学等自然科學学科。現有265個分支機構和1000萬成員。《科學》雜誌的主辦者、出版者。.

新!!: 土星環和美國科學促進會 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 土星環和美国国家航空航天局 · 查看更多 »

無線電掩星

無線電掩星(RO,Radio occultation)是一種測量行星大氣層物理屬性的遙感技術。它依靠檢測穿越過行星大氣層,也就是大氣層掩蔽的無線電信號變化。當電磁波輻射穿過大氣層時會被折射,折射的大小取決於正常路徑的折射梯度,也就是折射率梯度取決於密度梯度。當輻射經歷漫長的大氣邊緣路徑時,影響的效果最為明顯。當無線電頻率的彎曲總量不能直接測量時,可以反過來使用都卜勒頻移信號計算和測量彎曲度,給出發射器和接收器的幾何關係。彎曲的總量可以通過使用阿貝耳轉換公式,導出相關的折射率與角度。將無線電掩星技術的資料應用在氣象學上,可以推導出中性大氣層(在電離層之下)的溫度、壓力和水蒸氣的含量的資訊。.

新!!: 土星環和無線電掩星 · 查看更多 »

熱失控

熱失控(thermal runaway,又譯:熱跑脫)所指的情況是,當溫度增高時引發的變化使溫度更進一步的增高,產生惡性循環,因而導致某一種破壞性的結果。這是一種正回饋。.

新!!: 土星環和熱失控 · 查看更多 »

牛顿万有引力定律

万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.

新!!: 土星環和牛顿万有引力定律 · 查看更多 »

螺旋星系

螺旋星系是星系的類型之一,但哈伯在1936年最初的描述是星雲的領域(pp. 124–151),並且列在哈伯序列,成為其中的一部分。多數的螺旋星系包含恆星的平坦、旋轉盤面,氣體和塵埃,和中央聚集高濃度恆星,稱為核球的核心。這些通常被許多恆星構成的黯淡暈包圍著,其中許多恆星聚集在球狀星團內。 螺旋星系是以它們從核心延伸到星盤的螺旋結構命名。螺旋臂是恆星正在形成的區域,並且因為是年輕、炙熱的OB星居住的區域,所以比周圍明亮。 大約三分之二的螺旋星系都有附加的,形狀像是棒子的結構,從中心的核球突出,並且螺旋臂從棒的末端開始延伸。棒旋星系相較於無棒的表兄弟的比率可能在宇宙的歷史中改變,80億年前大約只有10%有棒狀構造,25億年前大約是四分之一,直到目前在可觀測宇宙(哈伯體積)已經超過三分之二有棒狀構造。 在1970年代,雖然很難從地球在銀河系中的位置很難觀察到棒狀結構,但我們的銀河系已經被證實為棒旋星系 。在銀河中心的恆星形成棒狀結構,最令人信服的證據來自最近的幾個調查,包括史匹哲太空望遠鏡。 包含不規則星系在內,現今宇宙中的星系有大約60%是螺旋星系。 它們大多是在低密度區域被發現,在星系團的中心則很罕見。.

新!!: 土星環和螺旋星系 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 土星環和行星 · 查看更多 »

行星环

行星環是指圍繞著行星運轉的宇宙塵和小顆粒形成扁平盤狀的區域。最廣為人知的行星環就是圍繞著土星的土星環,但是太陽系的其他三顆氣體巨星(木星、天王星和海王星)也都有自己的行星環。 最近的報告 認為土星的衛星麗亞可能也有自己的環系統,它可能成為唯一擁有自己的環系統的衛星。.

新!!: 土星環和行星环 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 土星環和视星等 · 查看更多 »

詹姆斯·克拉克·麦克斯韦

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,),苏格兰数学物理学家。其最大功绩是提出了将电、磁、光统归为电磁场中现象的麦克斯韦方程组。麦克斯韦在电磁学领域的功绩实现了物理学自艾萨克·牛顿后的第二次统一。 在1864年發表的論文《電磁場的動力學理論》中,麦克斯韦提出電場和磁場以波的形式以光速在空間中传播,并提出光是引起同种介质中電场和磁场中許多現象的电磁扰动,同时从理论上预测了电磁波的存在。此外,他还推进了分子运动论的发展,提出了彩色摄影的基础理论,奠定了结构刚度分析的基礎。 麦克斯韦被普遍认为是十九世纪物理学家中,对于二十世纪初物理学的巨大进展影响最为巨大的一位。他的科学工作为狭义相对论和量子力学打下理论基础,是现代物理学的先声。有观点认为,他对物理学的发展做出的贡献仅次于艾萨克·牛顿和阿尔伯特·爱因斯坦。在麦克斯韦百年诞辰时,爱因斯坦本人盛赞了麦克斯韦,称其对于物理学做出了“自牛顿时代以来的一次最深刻、最富有成效的变革”。.

新!!: 土星環和詹姆斯·克拉克·麦克斯韦 · 查看更多 »

麗亞環

土星的衛星麗亞(土衛五)可能有一個稀疏的環系統,包含有三條狹窄、相對來說是密集微粒組成的盤面。此一發現公布在2008年3月6日的《科學雜誌》,這可能是被發現的第一個環繞著衛星的環系統。 在2005年的11月,卡西尼軌道船發現土星的磁氣層在麗亞附近有高能量的電子。根據發現的團隊說明,最好的解釋模式是假設電子被固體的物體吸附在它赤道的盤面上,這些可以包含密集的圓環或弧,而微粒的直徑可以從幾公分至接近1米。.

新!!: 土星環和麗亞環 · 查看更多 »

軌道

軌道可以指:.

新!!: 土星環和軌道 · 查看更多 »

軌道傾角

軌道傾角通常是參考平面和另一個平面或軸的方向之間的夾角。軸傾斜的表示法是行星的自轉軸和通過行星的中心垂直於公轉軌道平面的線之間所夾的角度。.

新!!: 土星環和軌道傾角 · 查看更多 »

黄道

道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转) 。太阳的视运动轨迹并不能经常被观测到,地球自转产生了日出与日落的变化,这掩盖了太阳相对其他星星运动的轨迹。 黃道是在一年當中太陽在天球上的視路徑,看起來它在群星之間移動的路徑,明顯的也是行星在每年中所經過的路徑。更明確的說,它是球狀的表面(天球)與黃道平面的交集;以幾何學來描述,它是包含地球環繞太陽運行的平均軌道平面。 西方的黃道(ecliptic)一詞是從蚀(eclipse)發生的地方延伸出來的。 由于地球公转受到月球和其他行星的摄动,地球公转轨道并不是严格的平面,即在空间产生不规则的连续变化,这种变化包括多项短周期的和一项缓慢的长期运动。短周期运动可以通过一定时期内的平均加以消除,消除了周期运动的轨道平面称为瞬时平均轨道平面。.

新!!: 土星環和黄道 · 查看更多 »

轨道共振

軌道共振是天體力學中的一種效應與現象,是當在軌道上的天體於週期上有簡單(小數值)的整數比時,定期施加的引力影響到對方所產生的。軌道共振的物理原理在概念上類似於推動兒童盪的鞦韆,軌道和擺動的鞦韆之間有著一個自然頻率,其它機制和“推”所做的動作週期性的重複施加,產生累積性的影響。軌道共振大大的增加了相互之間引力影響的機構,即它們能夠改變或限制對方的軌道。在多數的情況下,這導致“不穩定”的互動,在其中的兩者互相交換動能和轉移軌道,直到共振不再存在。在某些情況下,一個諧振系統可以穩定和自我糾正,所以這些天體仍維持著共振。例如,木星衛星佳利美德、歐羅巴、和埃歐軌道的1:2:4共振,以及冥王星和海王星之間的2:3共振。土星內側衛星的不穩定共振造成土星環中間的空隙。1:1的共振(有著相似軌道半徑的天體)在特殊的情況下,造成太陽系大天體將共享軌道的小天體彈射出去;這是清除鄰居最廣泛應用的機制,而此一效果也應用在目前的行星定義中。 除了拉普拉斯共振圖(見下文)中指出,在這篇文章中的共振比率應被解釋為在相同的時間間隔內完成軌道數的比例,而不是作為公轉週期比(其中將會呈反比關係)。上面2:3的比例意味著在冥王星完成兩次完整公轉的時間,海王星要完成三次完整的公轉。.

新!!: 土星環和轨道共振 · 查看更多 »

航天动力学

航天动力学是研究航天器和运载器在飞行中所受的力及其在力作用下的运动的学科,又称星际航行动力学、天文动力学和太空動力學。航天动力学研究的运动包括航天器的质心运动,称轨道运动;航天器相对于自身质心的运动和各部分的相对运动,称姿态运动;以及与航天器发射、航天器轨道机动飞行有关的火箭运动。航天器的飞行过程一般分为三个阶段。.

新!!: 土星環和航天动力学 · 查看更多 »

航海家計畫

航海家計畫(--,Voyager program)是美國的無人太空探測衛星計畫,包括航海家1號與航海家2號探測衛星。它們都在1977年發射,並從1970年代末開始探測太陽系的行星。雖然航海家計畫一開始只設計針對木星與土星來進行探測,不過這兩個衛星最終都抵達太陽系邊緣,並持續傳回相關資訊。航海家1號與2號目前仍持續朝太陽系外前進,而航海家1號則是目前距離地球最遠的人造物體。 航海家1號與2號衛星都獲得大量關於太陽系氣體行星的資料,大幅增加天文學家對於它們的認識。而衛星軌道的變化也被科學家用來研究海王星外天體的存在。.

新!!: 土星環和航海家計畫 · 查看更多 »

赤道

赤道通常指地球表面的点随地球自转产生的轨迹中周长最长的圆周线,长。如果把地球看做一个绝对的球体的话,赤道距离南北两极相等。它把地球分为南北两半球,其以北是北半球,以南是南半球,是划分纬度的基线,赤道的纬度为0°。赤道的78.7%被海洋覆盖,余下的21.3%为陆地。除地球外,其他行星及天体也有类似的赤道。.

新!!: 土星環和赤道 · 查看更多 »

闪电

闪电,在大气科学中指大气中的强放电现象。在夏季的雷雨天气,雷电现象较为常见。它的发生与云层中气流的运动强度有关。有资料显示,冬季下雪时也可能发生雷电现象,即雷雪,但是发生機會相当微小。若有嚴重的火山爆發時,或是原子彈爆炸產生曇狀雲,空中可能因短路而發生閃電。 闪电的放電作用通常會產生电光。雷电起因一般被认为是云层内的各种微粒因为碰撞摩擦而积累电荷,当电荷的量达到一定的水平,等效于云层间或者云层与大地之间的电压达到或超过某个特定的值时,会因为局部电场强度达到或超过当时条件下空气的电击穿强度从而引起放电。空气中的電力經過放電作用急速地將空氣加熱、膨脹,因膨脹而被壓縮成電漿,再而產生了闪电的特殊構件雷(衝擊波的聲音)。目前对于放电具体过程的认识还不能透徹明白,一般被认为和长间隙击穿的现象相类似。 闪电的电流很大,其峰值一般能达到几万安培,但是其持续的时间很短,一般只有几十微秒。所以闪电电流的能量不如想象的那么巨大。不过雷电电流的功率很大,对建筑物和其他设备尤其是电器设备的破坏十分巨大,所以需要安装避雷针或避雷器等以在一定程度上保护这些建筑和设备的安全。.

新!!: 土星環和闪电 · 查看更多 »

肉眼

在量測或觀察上,肉眼是指在沒有配合光學儀器(如望遠鏡或顯微鏡)的情形下進行的視覺觀察或檢測。在天文學上,肉眼可以觀察一些較顯著的,不需配合天文儀器的現象,例如彗星經過或是流星雨。.

新!!: 土星環和肉眼 · 查看更多 »

自然 (期刊)

《自然》(Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版於1869年11月4日。虽然今天大多数科学期刊都专一於一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》等)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。 《自然》的主要读者是从事研究工作的科学家,但期刊前部的文章概括使得一般公众也能理解期刊内最重要的文章。期刊开始部分的社论、新闻及专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等。期刊也介绍与科学研究有关的书籍和艺术。期刊的其余部分主要是研究论文,这些论文往往非常紧密,非常具有技术性。 在《自然》上发表文章是非常光荣的,《自然》上的文章经常被引用,这有助于晋升、获得资助和获得主流媒体的关注。因此科学家之间在《自然》或《科学》上发表文章上的竞争非常强。但是与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。.

新!!: 土星環和自然 (期刊) · 查看更多 »

英国广播公司

英国广播公司(British Broadcasting Corporation,縮寫:BBC;又譯「英國國家廣播公司」以強調其公營地位)是英国的一家资金主要来自英国国民缴纳的电视牌照费且独立运作的公共媒体,也是世界最大的公共广播公司。在相当长的一段时间内,BBC一直垄断着英国的电视、电台广播业务。在1955年英国独立电视台成立之前,BBC一直是全英国唯一的电视、电台广播公司。今天BBC除了是一家在全球拥有高知名度的媒体,还提供其他各种服务,包括书籍出版、报刊、英语教学、交响乐团、互联网新闻服务。.

新!!: 土星環和英国广播公司 · 查看更多 »

進動

進動(precession)是自轉物體之自轉軸又繞著另一軸旋轉的現象,又可稱作旋進。在天文學上,又稱為「歲差現象」。 常見的例子為陀螺。當其自轉軸的軸線不再呈鉛直時,即自转轴与对称轴不重合不平行时,會發現自轉軸會沿著鉛直線作旋轉,此即「旋進」現象。另外的例子是地球的自轉。 對於量子物體如粒子,其帶有自旋特徵,常將之類比於陀螺自轉的例子。然而實際上自旋是一個內稟性質,並不是真正的自轉。粒子在標準的量子力學處理上是視為點粒子,無法說出一個點是怎樣自轉。若要將粒子視為帶質量球狀物體來計算,以電子來說,會發現球表面轉速超過光速,違反狹義相對論的說法。 自旋的進動現象主要出現在核磁共振與磁振造影上。其中的例子包括了穩定態自由旋進(進動)造影。 進動是轉動中的物體自轉軸的指向變化。在物理學中,有兩種類型的進動,自由力矩和誘導力矩,此處對後者的討論會比較詳細。在某些文章中,"進動"可能會提到地球經驗的歲差,這是進動在天文觀測上造成的效應,或是物體在軌道上的進動。.

新!!: 土星環和進動 · 查看更多 »

Maxwell

Maxwell中文常見譯名有麥斯威爾、馬克士威、麦克斯韦、麥克斯威爾,這些可以表示:.

新!!: 土星環和Maxwell · 查看更多 »

Science (journal)

#重定向 科学 (期刊).

新!!: 土星環和Science (journal) · 查看更多 »

掩星

掩星是一種天文現象,指一個天體在另一個天體與觀測者之間通過而產生的遮蔽現象。一般而言,掩蔽者較被掩者的視面積要大。(若相反者則稱為“凌”,如金星凌日,“凌”有以小欺大的意思。)有天文愛好者認為日食也是月掩星的一種。.

新!!: 土星環和掩星 · 查看更多 »

恩克

#重定向 约翰·弗朗茨·恩克.

新!!: 土星環和恩克 · 查看更多 »

椭圆

在数学中,椭圆是平面上到两个固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成了一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓的圖形了。.

新!!: 土星環和椭圆 · 查看更多 »

正回饋

正回饋(),是反馈的一種。是指一系統的輸出影響到輸入,使得輸出變動後會影響到輸入,造成輸出變動持續加大的情形;同理,如果輸出變動持續減少,就稱為負回饋。 簡單來說,當A產生了更多的B,B會回過來產生更多的A,這個過程就稱為正回饋。在機械、電機、電子、化學、經濟或是其他系統都會有類似的情形。.

新!!: 土星環和正回饋 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 土星環和氧 · 查看更多 »

洛希極限

洛希極限(Roche limit)是一個天體自身的重力与第二個天體造成的潮汐力相等时的距離。當两个天體的距離少於洛希極限,天體就會傾向碎散,繼而成為第二個天體的環。它以首位計算這個極限的人愛德華·洛希命名。 洛希極限常用于行星和环绕它的衛星。有些天然和人工的衛星,儘管它們在它們所環繞的星體的洛希極限內,卻不至成碎片,因為它們除了引力外,還受到其他的力。木衛十六和土衛十八是其中的例子,它們和所環繞的星體的距離少於流體洛希極限。它們仍未成為碎片是因為有彈性,加上它們並非完全流體。在這個情況,在衛星表面的物件有可能被潮汐力扯離衛星,要視乎物件在衛星表面哪部分——潮汐力在兩個天體中心之間的直線最強。 一些內部引力較弱的物體,例如彗星,可能在經過洛希極限內時化成碎片。蘇梅克-列維9號彗星就是好例子。它在1992年經過木星時分成碎片,1994年落在木星上。 現時所知的行星環都在洛希極限之內。.

新!!: 土星環和洛希極限 · 查看更多 »

潮汐力

潮汐力或引潮力是萬有引力的效果,它使得潮汐發生。它源於在一個星體的直徑上各點的引力場不相等。 當一個天體甲受到天體乙的引力的影響,力場在甲面對乙跟背向乙的表面的作用,有很大差異。這使得甲出現很大應變,甚至會化成碎片(參見洛希極限)。除非引力場完全相等,否則這些應變還是會出現。 潮汐力會改變天體的形狀而不改變其體積。地球的每部分都受到月球的引力影響而加速,在地球的觀察者因此看到海洋內的水不斷重新分布。 當天體受潮汐力而自轉,內部摩擦力會令其旋轉動能化為內能,內能繼而轉成熱。若天體相當接近系統內質量最大的天體,自轉的天體便會以同一面朝質量最大的天體公轉,即潮汐鎖定,例如月球和地球。.

新!!: 土星環和潮汐力 · 查看更多 »

木星環

木星環,是指圍繞在木星周圍的行星環系統。它是太陽系第三個被發現的行星環系統,第一個和第二個分別是土星環及天王星環。木星環首次被觀測到是在1979年,由航海家一號發現及在1990年代受到伽利略號進行詳細調查。木星環在25年來亦可以由哈勃太空望遠鏡及地球觀察。在地上需要現存最大的望遠鏡才能夠進行木星環的觀察。 隱約的木星環系統主要由塵埃組成。木星環分成四個部分:厚厚的粒子環面內晕層稱為“光環”;一個相對光亮的而且特別薄的“主環”;以及兩個外部既厚又隱約的“薄紗環”(或称“蛛网环”),其名稱由形成她們的物質的衛星而來:木衛五(阿馬爾塞)和木衛十四(底比斯)。 木星環的主環及光環由衛星木衛十六(墨提斯)、木衛十五(阿德剌斯忒亞)及其他不能觀測的主體因為高速撞擊而噴出的塵埃組成。在2007年二月至三月由新視野號取得的高解像度圖像顯示主環有豐富的精細結構。 在可見光及近紅外線光線下,除了光環呈現灰色或藍色外,木星環會呈現紅色。在環內的塵埃大小不定,但是所有環除了光環以外的塵埃橫切面面積最大為半徑約15微米的非球體粒子。光環主要由亞微米級塵埃組成。環狀系統的主要質量(包括不可見的主體)約為1016 公斤,和木衛十五質量相當。環狀系統的年齡不詳,但是可能在木星形成時已經存在。.

新!!: 土星環和木星環 · 查看更多 »

望远镜

望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.

新!!: 土星環和望远镜 · 查看更多 »

星云

星雲(源自拉丁文的:nebulae或nebulæ,與ligature或nebulas,意思就是“雲”)是塵埃、氫氣、氦氣、和其他電離氣體聚集的星際雲。原本是天文學上通用的名詞,泛指任何天文上的擴散天體,包括在銀河系之外的星系(一些過去的用法依然留存著,例如仙女座星系依然使用愛德溫·哈伯發現它是星系之前的名稱,被稱為仙女座星雲)。星雲通常也是恆星形成的區域,例如鷹星雲,這個星雲刻畫出NASA最著名的影像,即創生之柱。在這個區域形成的氣體、塵埃和其他材料擠在一起,聚集了巨大的質量,這吸引了更多的質量,最後大到足以形成恆星。據了解,剩餘的材料還可以形成行星和行星系的其它天體。.

新!!: 土星環和星云 · 查看更多 »

海王星環

海王星环總共包含5個主要的行星環,且它們最早是由天文學家帕特里斯·布歇、萊因霍爾德·哈夫納和讓·曼弗雷德於1984年在智利拉西拉天文台發現的。而這些環的第一張照片則是於1989年由旅行者2号飞船拍攝的。十分微弱,由尘土构成,很像木星环或天王星环,但要比木星环纖細得多。這5個環後來分別以對發現海王星作出重大貢獻的5個人命名。他們分別是约翰·格弗里恩·伽勒、奥本·勒维耶、威廉·拉塞尔、弗朗索瓦·阿拉戈和约翰·柯西·亚当斯。 海王星环的组成物质非常黑暗,類似於天王星環。环裡的灰塵比例較高,且其光学深度較低,小于0.1。亚当斯环分为五个環弧,又逆時針方向分別被命名为博爱,平等1和平等2,自由,和勇气。弧占据范围狭窄,轨道经度非常稳定。环弧如何保持稳定仍在进行辩论。.

新!!: 土星環和海王星環 · 查看更多 »

旅行者1号

旅行者1号(Voyager 1)是美国国家航空航天局(NASA)研制的一艘无人外太阳系太空探测器,重825.5kg,于1977年9月5日发射,截止到2018年仍然正常运作。它是有史以来距离地球最远的人造飞行器,也是第一个离开太阳系的人造飞行器。受惠于几次的引力加速,旅行者1号的飞行速度比现有任何一个飞行器都要快些,这使得较它早两星期发射的姊妹船旅行者2号永远都不会超越它。它的主要任务在1979年经过木星系统、1980年经过土星系统之后,结束于1980年11月20日。它也是第一个提供了木星、土星以及其卫星详细照片的探测器。2012年8月25日,“旅行者1号”成为第一个穿越太阳圈并进入星际介质的宇宙飞船。截至2018年1月2日止,旅行者1号正处于离太阳,是离地球最远的人造物体。 旅行者1号目前在沿飞行,并已经达到了第三宇宙速度。这意味着他的轨道再也不能引导太空船飞返太阳系,与没法联络的先驱者10号及已停止操作的先驱者11号一样,成为了一艘星际太空船。 旅行者1号原先的主要目标,是探测木星与土星及其卫星与环。现在任务已变为探测太阳风顶,以及对太阳风进行粒子测量。两艘旅行者号探测器,都是以三块放射性同位素热电机作为动力来源。这些发电机目前已经大大超出了起先的设计寿命,一般认为它们在大约2020年之前,仍然可提供足够的电力令太空船能够继续与地球联系。钚核电池能够保证旅行者号上搭载的科学仪器继续工作至2025年。2036年,讯号传输的电力将消耗殆尽。一旦电池耗尽,“旅行者1号”将继续向银河系中心前进,不会再向地球发回数据。.

新!!: 土星環和旅行者1号 · 查看更多 »

愛德華·洛希

愛德華·艾伯特·洛希 (Édouard Albert Roche,1820-1883),法國數學家與天文學家,他最傑出的表現是在天體力學的領域,他的名字被冠在洛希球、洛希極限和洛希瓣等觀念上。 他誕生於蒙彼利埃,並就讀於蒙彼利埃大學,稍後他並成為該校的教授,於1849年開始擔任Faculté des科學講座。洛希利用數學研究拉普拉斯的星雲假說並將得到的結果發表在他任職的的蒙特利埃研究會的學報上,直到1877年。其中最重要的是彗星(1860年)和星雲假說(1873年)本身。洛希的研究解釋了強大引力場中小顆粒群集的效應。 他在歷史上最著名的理論或許是關於土星的行星環如何形成的理論,當一顆巨大的衛星過度接近土星時會被重力拉扯而分離。他描述了一種計算聚集在一起的物體在何種距離內就會被潮汐力扯碎掉,這個距離就是所知的洛希極限。 他另一個著名的著名的工作是在軌道力學上的發展。洛希瓣描述一個小物體環繞著另兩個物體時會被何者捕獲的限制,而洛希球類似於重力場球對天體的影響,在受到另一個大質量天體的攝動時如何影響它環繞的軌道。 Category:法國天文學家 Category:潮汐力.

新!!: 土星環和愛德華·洛希 · 查看更多 »

托林 (天文学)

托林(tholin,來自θολός,「不清澈的」)是一种存在于远离恒星的寒冷星体上的物质,是一类共聚物分子,由原初的甲烷、乙烷等簡單結構有機化合物在紫外线照射下形成,但它并不是单一的纯净物,并没有确定的化学分子或明确的混合物与之对应。托林通常为浅红色或棕色的外观。托林無法在今日的地球自然環境下形成,但在外太陽系以冰組成的天體表面有極大的含量。.

新!!: 土星環和托林 (天文学) · 查看更多 »

托斯卡纳

#重定向 托斯卡纳大区.

新!!: 土星環和托斯卡纳 · 查看更多 »

晝夜平分點

#重定向 分點.

新!!: 土星環和晝夜平分點 · 查看更多 »

重定向到这里:

Keeler缝卡西尼分界線卡西尼分界线卡西尼缝土星光環土星环基勒缝基勒環縫

传出传入
嘿!我们在Facebook上吧! »