我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

圆和角

快捷方式: 差异相似杰卡德相似系数参考

圆和角之间的区别

圆 vs. 角

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。. 在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.

之间圆和角相似

圆和角有(在联盟百科)10共同点: 半径平面平行几何原本直线直角欧几里得

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

半径和圆 · 半径和角 · 查看更多 »

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

圆和平面 · 平面和角 · 查看更多 »

平行

平行是一个几何学术语。在平面几何中,永远不会相交的多条直线,或者多个平面彼此互相平行。在欧几里得几何中,由平行公设,一个平面上的直线外指定一个点,就能指定出一条与它平行的直线。在非欧几何中,根据空间曲率的不同,在一条直线外指定一个点可以作多条或零条与它平行的直线。 在三维空间或一般的欧几里得空间中,直线或平面的平行关系视乎其方向向量或法向量,但與二維平面一樣,在一条直线外面指定一个点也只能表示一条与它平行的直线,并且在一个平面外指定一个点也只能指定一個与它平行的平面。然而,在一个平面外指定一个点可以指定和它平行的直线是无数条(这些直线都在与它平行的唯一一个平面上)。.

圆和平行 · 平行和角 · 查看更多 »

弧是一條平面曲線,它是圓上兩點間的一段,包含兩個端點。 連接弧的兩個端點之間的線段被命名為弦。 若圓心位於弧與弦連接成的封閉圖形之內,這段弧稱為優弧。若圓心位於弧與弦連接成的封閉圖形之外,這段弧稱為劣弧。.

圆和弧 · 弧和角 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

圆和圆 · 圆和角 · 查看更多 »

几何原本

《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.

几何原本和圆 · 几何原本和角 · 查看更多 »

直线

線,是一個點在平面或空間沿著一定方向和其相反方向運動的軌跡;不彎曲的線。直線是幾何學的基本概念,在不同的幾何學體系中有著不同的描述。在這裡主要描述歐幾里得空間中的直線。其他曲率非零狀況下的直線,請參考非歐幾里得幾何。 歐幾里得幾何研究曲率為零的空間下狀況,它並未對點、直線、平面、空間給出定義,而是通過公理來描述點線面的關係。 歐幾里得幾何中的直線可以看作是一個點的集合,這個集合中的任意一點都在這個集合中的其他任意兩點所確定的直綫上。 “過兩點有且只有一條直線”是歐幾里得幾何體系中的一條公理,“有且只有”意即“確定”,即兩點確定一直線。 在幾何學中,直線沒有粗細、沒有端點、沒有方向性、具有無限的長度、具有確定的位置。.

圆和直线 · 直线和角 · 查看更多 »

直角

在幾何學和三角學中,直角,又稱正角,是角度為90度的角。它相對於四分之一個圓周(即四分之一個圓形),因为把圆周对应的圆心角划分为360度,所以直角等于90度,而兩個直角便等於一個平角(180°)。角度比直角小的稱為銳角,比直角大而比平角小的稱為鈍角。 當兩條線的夾角是直角,這兩條線便是互相垂直,是幾何上的一個重要性質。而一個三角形的其中一個內角為90°時,便稱為直角三角形,是應用畢氏定理的先決條件。 如果直線AB為圓形的直徑,那麼取圓上的任何一點C所形成的三角形,∠ACB必為90°,是圓的其中一個性質,名為(半圓上的圓周角)。 在不同的應用上,直角有多種表示:.

圆和直角 · 直角和角 · 查看更多 »

在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.

圆和角 · 角和角 · 查看更多 »

欧几里得

欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.

圆和欧几里得 · 欧几里得和角 · 查看更多 »

上面的列表回答下列问题

圆和角之间的比较

圆有62个关系,而角有81个。由于它们的共同之处10,杰卡德指数为6.99% = 10 / (62 + 81)。

参考

本文介绍圆和角之间的关系。要访问该信息提取每篇文章,请访问: