我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

四面體和棱锥

快捷方式: 差异相似杰卡德相似系数参考

四面體和棱锥之间的区别

四面體 vs. 棱锥

四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。. 在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.

之间四面體和棱锥相似

四面體和棱锥有(在联盟百科)10共同点: 多面体七角錐三角形平面五角錐六角錐四面體四角錐棱锥正四面體

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

四面體和多面体 · 多面体和棱锥 · 查看更多 »

七角錐

在幾何學中,七角錐是指底面為七邊形的錐體。所有七角錐皆為八面體,具有8個面、14個邊和8個頂點,對偶仍為七角錐,是一個自身對偶多面體。 七角錐是257種凸八面體之一,七角錐也可以做為有形數的形.

七角錐和四面體 · 七角錐和棱锥 · 查看更多 »

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

三角形和四面體 · 三角形和棱锥 · 查看更多 »

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

四面體和平面 · 平面和棱锥 · 查看更多 »

五角錐

五角錐是指底面為五邊形的錐.

五角錐和四面體 · 五角錐和棱锥 · 查看更多 »

六角錐

在幾何學中,六角錐是指底面為六邊形的錐體,由六邊形各個頂點向它所在的平面外一點依次連直線段而構成。所有六角錐皆為七面體,具有7個面、12個邊和7個頂點,如同其他的錐體,對偶仍為六角錐,是一個自身對偶多面體。 若一個六角錐的底面為正六邊形則可稱為正六角錐,但正六角錐不能算是詹森多面體,因為若每一個面都是正多邊形的話,整個圖形將會共平面,成為六階三角形鑲嵌的一部分。 正六角錐具有C6v symmetry對稱性,並且使得其高與底面的交點與任意底面頂點和錐體頂部的頂點可構成直角三角形。.

六角錐和四面體 · 六角錐和棱锥 · 查看更多 »

四面體

四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.

四面體和四面體 · 四面體和棱锥 · 查看更多 »

四角錐

四角錐是底面為四邊形的錐體。.

四角錐和四面體 · 四角錐和棱锥 · 查看更多 »

棱锥

在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.

四面體和棱锥 · 棱锥和棱锥 · 查看更多 »

正四面體

正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.

四面體和正四面體 · 棱锥和正四面體 · 查看更多 »

上面的列表回答下列问题

四面體和棱锥之间的比较

四面體有45个关系,而棱锥有40个。由于它们的共同之处10,杰卡德指数为11.76% = 10 / (45 + 40)。

参考

本文介绍四面體和棱锥之间的关系。要访问该信息提取每篇文章,请访问: