我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

四角化六面體和正六邊形鑲嵌

快捷方式: 差异相似杰卡德相似系数参考

四角化六面體和正六邊形鑲嵌之间的区别

四角化六面體 vs. 正六邊形鑲嵌

在幾何學中,四角化六面體是一種卡塔蘭多面體,其為截角正八面體的對偶多面體。 四角化六面體是正方形四邊各加一個等腰三角形拼成的正八邊形在立體幾何中的推廣。 一個邊長為a的四角化六面體,它的表面積A. 在幾何學中,正六邊形鑲嵌是一種平面鑲嵌,由正六邊形重覆組合排列而成,且填滿整個平面,而且沒有任何空隙或重疊,由於皆由正多邊形組成,因此稱為正鑲嵌圖。正六邊形鑲嵌是三维欧几里得空间中三个正密铺之一。另外两个分别是正三角形镶嵌和正方形镶嵌。 由於正六邊形鑲嵌是由正六邊形組成,又因正六邊形內角為120°,因此每個頂點周圍都有3個正六邊形,且剛好占滿360°,才能填滿平面。 在施萊夫利符號中,正六邊形鑲嵌可用或t表示。.

之间四角化六面體和正六邊形鑲嵌相似

四角化六面體和正六邊形鑲嵌有1共同点(的联盟百科): 几何学

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

几何学和四角化六面體 · 几何学和正六邊形鑲嵌 · 查看更多 »

上面的列表回答下列问题

四角化六面體和正六邊形鑲嵌之间的比较

四角化六面體有10个关系,而正六邊形鑲嵌有35个。由于它们的共同之处1,杰卡德指数为2.22% = 1 / (10 + 35)。

参考

本文介绍四角化六面體和正六邊形鑲嵌之间的关系。要访问该信息提取每篇文章,请访问: