我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

四維力和狹義相對論中的加速度

快捷方式: 差异相似杰卡德相似系数参考

四維力和狹義相對論中的加速度之间的区别

四維力 vs. 狹義相對論中的加速度

四維力(four-force)是古典力學中的力物理量在相對論中對應的四維版本。. 狹義相對論中的加速度類似於牛頓力學中的概念,乃速度對於時間的微分。因為相對論中的勞侖茲轉換及時間膨脹,時間與距離的概念變為複雜,因此「加速度」的定義也變得複雜。狹義相對論為平直閔考斯基時空的理論,即使加速度存在依然有效,前提是能量動量張量所造成的重力場效應可以忽略。否則,則需用到廣義相對論以及彎曲時空來詮釋。在地球表面附近,時空彎曲程度不明顯,因此實務上採用狹義相對論來詮釋物理現象仍是合宜作法,比如粒子加速器實驗。 如同在外界慣性座標系中的測量,三維空間中的普通加速度(稱為「三維加速度」或「座標加速度」)的轉換式可以推導得出。此外作為一特例,也可用共動(comoving)的加速規來測量固有加速度。另一種有用的形式是四維加速度,其分量可透過勞侖茲轉換在不同參考系中做連結。連結加速度與力的運動方程式也可得到。幾種特殊形式的加速物體運動方程式以及它們的彎曲世界線可以透過對上述方程式的積分求得。知名的特例如,適用於常數值縱向固有加速度的例子,以及等速率圓周運動。最後,在狹義相對論的架構下,描述加速參考系中的物理現象亦為可行。 歷史演進上,在相對論發展的早年即已出現包含加速度的相對論性方程式,在早年的教科書中有整理,如馬克斯·馮·勞厄(1911年、1921年)von Laue (1921)或沃夫岡·包立(1921年)。Pauli (1921)舉例來說,運動方程式以及加速度轉換式於以下學者的論文中建立起來:亨德里克·勞侖茲(1899年、1904年)、儒勒·昂利·龐加萊(1905年)、阿爾伯特·愛因斯坦(1905年)、馬克斯·普朗克(1906年);四維加速度、固有加速度與雙曲運動的分析參見赫爾曼·閔考斯基 (1908年)、馬克斯·玻恩(1909年)、(1909年)、阿諾·索末菲(1910年)、馮·勞厄(1911年)。.

之间四維力和狹義相對論中的加速度相似

四維力和狹義相對論中的加速度有(在联盟百科)13共同点: 动量原時导数廣義相對論彎曲時空微分光速四維加速度四維矢量经典力学运动方程速度

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

动量和四維力 · 动量和狹義相對論中的加速度 · 查看更多 »

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

力和四維力 · 力和狹義相對論中的加速度 · 查看更多 »

原時

原時,或称固有時間,是在相對論中與事件位在同處的時鐘所測量的唯一時間,他不僅取決於事件,時鐘也在事件的行動之中。對同一個事件,一個加速中的時鐘所測得的原時會比在非加速(慣性)中時鐘的原時為短。雙生子佯謬就是其中的一個例子。 相對的,能由一個與事件有一段距離的觀測者來應用。在狹義相對論中,協調時總是由在慣性系統內有關聯的觀測者計算,而原時則由同在加速中的觀測者測量。 在四維時空中,原時類似在三維空間(歐幾里得空間)的弧長。 在習慣上,原時通常使用大寫希臘字母\tau來標示,以與協調時t或T.有所區別。.

原時和四維力 · 原時和狹義相對論中的加速度 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

四維力和导数 · 导数和狹義相對論中的加速度 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

四維力和廣義相對論 · 廣義相對論和狹義相對論中的加速度 · 查看更多 »

彎曲時空

#重定向 廣義相對論.

四維力和彎曲時空 · 彎曲時空和狹義相對論中的加速度 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

四維力和微分 · 微分和狹義相對論中的加速度 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

光速和四維力 · 光速和狹義相對論中的加速度 · 查看更多 »

四維加速度

在相對論中,四維加速度是牛頓力學中三維加速度的對應推廣,其為一個四維向量。四維加速度應用於反質子湮滅反應、奇異粒子共振、加速電荷的輻射現象等研究領域中。.

四維力和四維加速度 · 四維加速度和狹義相對論中的加速度 · 查看更多 »

四維矢量

在相對論裏,四維向量(four-vector)是實值四維向量空間裏的矢量。這四維向量空間稱為閔考斯基時空。四維向量的分量分別為在某個時間點與三維空間點的四個數量。在閔考斯基時空內的任何一點,都代表一個「事件」,可以用四維向量表示。從任意慣性參考系觀察某事件所獲得的四維向量,通過勞侖茲變換,可以變換為從其它慣性參考系觀察該事件所獲得的四維向量。 本文章只思考在狹義相對論範圍內的四維向量,儘管四維向量的概念延伸至廣義相對論。在本文章內寫出的一些結果,必須加以修改,才能在廣義相對論範圍內成立。.

四維力和四維矢量 · 四維矢量和狹義相對論中的加速度 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

四維力和经典力学 · 狹義相對論中的加速度和经典力学 · 查看更多 »

运动方程

运动方程是刻划系统运动的物理参量所满足的方程或方程组。它们以这些参量对于时间的微分方程形式出现。.

四維力和运动方程 · 狹義相對論中的加速度和运动方程 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

四維力和速度 · 狹義相對論中的加速度和速度 · 查看更多 »

上面的列表回答下列问题

四維力和狹義相對論中的加速度之间的比较

四維力有25个关系,而狹義相對論中的加速度有54个。由于它们的共同之处13,杰卡德指数为16.46% = 13 / (25 + 54)。

参考

本文介绍四維力和狹義相對論中的加速度之间的关系。要访问该信息提取每篇文章,请访问: