我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

四元數和拉格朗日恒等式

快捷方式: 差异相似杰卡德相似系数参考

四元數和拉格朗日恒等式之间的区别

四元數 vs. 拉格朗日恒等式

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0. 在代数中,以约瑟夫·拉格朗日命名的拉格朗日恒等式是: \begin \biggl(\sum_^n a_k^2\biggr) \biggl(\sum_^n b_k^2\biggr) - \biggl(\sum_^n a_k b_k\biggr)^2 &.

之间四元數和拉格朗日恒等式相似

四元數和拉格朗日恒等式有(在联盟百科)5共同点: 复数 (数学)实数内积点积

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

四元數和复数 (数学) · 复数 (数学)和拉格朗日恒等式 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

四元數和实数 · 实数和拉格朗日恒等式 · 查看更多 »

内积

#重定向 点积.

内积和四元數 · 内积和拉格朗日恒等式 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

四元數和点积 · 拉格朗日恒等式和点积 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

四元數和模 · 拉格朗日恒等式和模 · 查看更多 »

上面的列表回答下列问题

四元數和拉格朗日恒等式之间的比较

四元數有92个关系,而拉格朗日恒等式有10个。由于它们的共同之处5,杰卡德指数为4.90% = 5 / (92 + 10)。

参考

本文介绍四元數和拉格朗日恒等式之间的关系。要访问该信息提取每篇文章,请访问: