我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

單態射和集合范畴

快捷方式: 差异相似杰卡德相似系数参考

單態射和集合范畴之间的区别

單態射 vs. 集合范畴

在範疇論裡,一個態射被稱之為單態射,則該態射為一具左消去律的態射。亦即,給定一單態射,則對所有的態射,均能使得 單態射是單射函數(或稱為一對一函數)在範畤論裡的延伸。單態射的對偶概念為滿態射,後者為滿射函數的延伸。一態射於範疇C 裡為單態射,則該態射於對偶範疇Cop 裡為滿態射。. 在範疇論這個數學領域中,集合範疇(標記為 Set)是一個對象為集合的範疇。集合 A 及 B 之間的態射族包含所有從 A 映射至 B 的函數。 集合範疇是許多其他範疇(如其態射為群同態的群範疇)的基礎,這些範疇均是在集合範疇的對象上附加其他結構,並限制其態射為特定函數而成。.

之间單態射和集合范畴相似

單態射和集合范畴有(在联盟百科)3共同点: 群同態范畴论阿貝爾範疇

群同態

在數學中,給定兩個群(G, *)和(H,·),從 (G, *)到 (H,·)的群同態是函數h: G → H使得對於所有G中的u和v下述等式成立 在這裡,等號左側的群運算*,是G中的運算;而右側的運算·是H中的運算。 從這個性質,可推導出h將G的單位元eG映射到H的單位元eH,并且它還在h(u-1).

單態射和群同態 · 群同態和集合范畴 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

單態射和范畴论 · 范畴论和集合范畴 · 查看更多 »

阿貝爾範疇

在數學中,阿貝爾範疇(或稱交換範疇)是一個能對態射與對象取和,而且核與上核存在且滿足一定性質的範疇;最基本的例子是阿貝爾群構成的範疇Ab。阿貝爾範疇是同調代數的基本框架。.

單態射和阿貝爾範疇 · 阿貝爾範疇和集合范畴 · 查看更多 »

上面的列表回答下列问题

單態射和集合范畴之间的比较

單態射有13个关系,而集合范畴有22个。由于它们的共同之处3,杰卡德指数为8.57% = 3 / (13 + 22)。

参考

本文介绍單態射和集合范畴之间的关系。要访问该信息提取每篇文章,请访问: