徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

哈密顿力学和特征值和特征向量

快捷方式: 差异相似杰卡德相似系数参考

哈密顿力学和特征值和特征向量之间的区别

哈密顿力学 vs. 特征值和特征向量

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。. 在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

之间哈密顿力学和特征值和特征向量相似

哈密顿力学和特征值和特征向量有(在联盟百科)3共同点: 实数交換律微分方程

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

哈密顿力学和实数 · 实数和特征值和特征向量 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

交換律和哈密顿力学 · 交換律和特征值和特征向量 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

哈密顿力学和微分方程 · 微分方程和特征值和特征向量 · 查看更多 »

上面的列表回答下列问题

哈密顿力学和特征值和特征向量之间的比较

哈密顿力学有53个关系,而特征值和特征向量有141个。由于它们的共同之处3,杰卡德指数为1.55% = 3 / (53 + 141)。

参考

本文介绍哈密顿力学和特征值和特征向量之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »