徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

哈勃空间望远镜和頻率

快捷方式: 差异相似杰卡德相似系数参考

哈勃空间望远镜和頻率之间的区别

哈勃空间望远镜 vs. 頻率

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。. 频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

之间哈勃空间望远镜和頻率相似

哈勃空间望远镜和頻率有(在联盟百科)5共同点: 可见光天体物理学紫外线红外线纳米

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

可见光和哈勃空间望远镜 · 可见光和頻率 · 查看更多 »

天体物理学

天體物理學,又稱「天文物理學」,是研究宇宙的物理學,這包括星體的物理性質(光度,密度,溫度,化學成分等等)和星體與星體彼此之間的交互作用。應用物理理論與方法,天體物理學探討恆星結構、恆星演化、太陽系的起源和許多跟宇宙學相關的問題。由於天體物理學是一門很廣泛的學問,天文物理學家通常應用很多不同的學術領域,包括力學、電磁學、統計力學、量子力學、相對論、粒子物理學等等。由於近代跨學科的發展,與化學、生物、歷史、計算機、工程、古生物學、考古學、氣象學等學科的混合,天體物理學目前大小分支大約三百到五百門主要專業分支,成為物理學當中最前沿的龐大領導學科,是引領近代科學及科技重大發展的前導科學,同時也是歷史最悠久的古老傳統科學。 天體物理實驗數據大多數是依賴觀測電磁輻射獲得。比較冷的星體,像星際物質或星際雲會發射無線電波。大爆炸後,經過紅移,遺留下來的微波,稱為宇宙微波背景輻射。研究這些微波需要非常大的無線電望遠鏡。 太空探索大大地擴展了天文學的疆界。太空中的觀測可讓觀測結果避免受到地球大氣層的干擾,科學家常透過使用人造衛星在地球大氣層外進行紅外線、紫外線、伽瑪射線和X射線天文學等電磁波波段的觀測實驗,以獲得更佳的觀測結果。 光學天文學通常使用加裝電荷耦合元件和光譜儀的望遠鏡來做觀測。由於大氣層的擾動會干涉觀測數據的品質,故於地球上的觀測儀器通常必須配備調適光學系統,或改由大氣層外的太空望遠鏡來觀測,才能得到最優良的影像。在這頻域裏,恆星的可見度非常高。藉著觀測化學頻譜,可以分析恆星、星系和星雲的化學成份。 理論天體物理學家的工具包括分析模型和計算機模擬。天文過程的分析模型時常能使學者更深刻地理解箇中奧妙;計算機模擬可以顯現出一些非常複雜的現象或效應其背後的機制。 大爆炸模型的兩個理論棟樑是廣義相對論和宇宙學原理。由於太初核合成理論的成功和宇宙微波背景輻射實驗證實,科學家確定大爆炸模型是正確無誤。最近,學者又創立了ΛCDM模型來解釋宇宙的演化,這模型涵蓋了宇宙暴胀(cosmic inflation)、暗能量、暗物質等等概念。 理論天體物理學家及實測天體物理學家分別扮演這門學科當中的兩大主力研究者,兩者專業分工。理論天體物理學家通常扮演大膽假設的研究者,理論不斷推陳出新,對於數據的驗證關心程度較低,假設程度太高時,經常會演變成偽科學,一般都是天體物理學研究者當中的激進人士。實測天體物理學家通常本身精通理論天體物理,在相當程度上來說也有能力自行發展理論,扮演小心求證的研究者,通常是物理實證主義的奉行者,只相信觀測數據,經常對理論天體物理學所提出的假說進行證偽或證實的活動,一般都是天體物理學研究者當中的保守人士。.

哈勃空间望远镜和天体物理学 · 天体物理学和頻率 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

哈勃空间望远镜和紫外线 · 紫外线和頻率 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

哈勃空间望远镜和红外线 · 红外线和頻率 · 查看更多 »

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

哈勃空间望远镜和纳米 · 纳米和頻率 · 查看更多 »

上面的列表回答下列问题

哈勃空间望远镜和頻率之间的比较

哈勃空间望远镜有124个关系,而頻率有89个。由于它们的共同之处5,杰卡德指数为2.35% = 5 / (124 + 89)。

参考

本文介绍哈勃空间望远镜和頻率之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »