我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

哈勃空间望远镜和老人增四

快捷方式: 差异相似杰卡德相似系数参考

哈勃空间望远镜和老人增四之间的区别

哈勃空间望远镜 vs. 老人增四

哈勃太空望遠鏡(Hubble Space Telescope,HST),是以天文學家愛德溫·哈伯為名,在地球軌道的望遠鏡。哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。由于它位于地球大氣層之上,因此獲得了地基望遠鏡所沒有的好處:影像不受大氣湍流的擾動、視相度絕佳,且无大氣散射造成的背景光,還能觀測會被臭氧層吸收的紫外線。於1990年發射之後,已經成為天文史上最重要的儀器。它成功弥补了地面觀測的不足,幫助天文學家解決了許多天文学上的基本問題,使得人类对天文物理有更多的認識。此外,哈勃的超深空視場则是天文學家目前能獲得的最深入、也是最敏銳的太空光學影像。 哈勃太空望遠鏡和康普頓γ射線天文台、錢德拉X光天文台、史匹哲太空望遠鏡都是美國太空總署大型轨道天文台计划的一部分。哈勃空间望远镜由NASA和ESA合作共同管理。. 繪架座β(英語:β Pic / β Pictoris)又稱為老人增四,为繪架座第二亮的恆星,與太陽之間的距離為63.4光年。它的表面溫度比太陽高,為8052K,質量為1.75太陽質量,絕對星等為2.42,比太陽明亮。繪架座β非常年輕,年齡介於800萬至2,000萬年之間,是一顆位於主序帶上的恆星。繪架座β還是一個年輕的星協繪架座β移動星群標示名稱的代表成員,星群集團中的成員年齡相當,並且在宇宙中朝著相同的方向移動。 繪架座β輻射出的紅外線比一般同類恆星還多,這是由恆星周圍大量的塵埃所造成的。天文學家在詳細觀測後發現一個由氣體和塵埃構成的大岩屑盤圍繞恆星旋轉,並且獲得第一張岩屑盤環繞著太陽系外恆星的影像。除此之外,它也有幾條微行星帶及彗星狀活動存在。有徵兆顯示盤內已經有行星成形,且行星的形成過程依然進行中。來自繪架座β星岩屑盤的物質如果在太陽系內會被認為是行星際間流星體的來源。 歐洲南天天文台的天文學家使用直接觀測法已經確認繪架座β附近有一顆行星存在,它位於恆星周圍的岩屑盤內,符合天文學家先前的預測。這顆行星是天文學家拍攝過的太陽系外行星中最接近恆星的一顆,大約相當於土星與太陽之間的距離。.

之间哈勃空间望远镜和老人增四相似

哈勃空间望远镜和老人增四有(在联盟百科)11共同点: 天体测量学太阳先進巡天照相機紫外线红外线纳米美国国家航空航天局角秒變星恒星木星

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

哈勃空间望远镜和天体测量学 · 天体测量学和老人增四 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

哈勃空间望远镜和太阳 · 太阳和老人增四 · 查看更多 »

先進巡天照相機

先進巡天照相機(ACS, Advanced Camera for Surveys)是哈伯太空望遠鏡上的一架第三代軸像儀器,原始的設計和科學功能是由約翰霍普金斯大學的團隊制定的。在哥倫比亞號太空梭的貨艙上組合以前,先由貝爾航太集團和戈達德太空飛行中心進行組裝和廣泛的測試,並在甘迺迪太空中心經歷飛行前最後的檢驗。他在2002年3月1日在編號為3B(STS-109)的維護任務發射升空,並且在3月7日完成安裝。被取代掉的是最後一件的原始儀器,暗天體照相機(FOC)。 先進巡天照相機是多功能的儀器,很快就成為哈伯太空望遠鏡產生影像的主要儀器。他提供好幾種超越過去儀器的功能:三個獨立的高解析通道,涵蓋了紫外線到近紅外線區域的光譜;大區域的檢測器和量子效應,使哈伯的發現效率增加了10倍;還有豐富和能互補的濾鏡、日冕儀、測偏振器和稜柵等功能。先進巡天照相機所承擔的觀測提供我們前所未有的高靈敏度,例如涵蓋廣大的範圍,從太陽系的行星、彗星到最遙遠的類星體的哈伯超深空視場,來體認我們獨特的宇宙。 在2006年6月,先進巡天照相機因為電子設備失效而失去了工作的能力。在2006年6月30日的早晨,成功切換到另一側備用的電子設備並啟動動力之後,儀器所有的子系統,包括CCD檢測器,似乎都能正常的運作。經由遙測技術觀察,在另一側的子系統都沒有異常的現象。經過一些工程上的測試之後,先進巡天照相機在2006年7月4日恢復科學上的操作。在2006年9月29日,一個相似的電子設備再度產生缺陷。而2007年1月27日,在備用的系統上更嚴重的電子缺陷,讓望遠鏡進入了安全模式,而且美國國家航空暨太空總署的工程師相信有些科學功能已經完全損壞了,三個通道中僅剩日盲通道可以使用。在2007年2月,新視野號飛掠木星之際,還用此通道配合木星觀測任務的進行。2009年5月,先进寻天照相机在STS-125维修任务中被修复。.

先進巡天照相機和哈勃空间望远镜 · 先進巡天照相機和老人增四 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

哈勃空间望远镜和紫外线 · 紫外线和老人增四 · 查看更多 »

红外线

红外线(Infrared,简称IR)是波长介乎微波与可见光之间的电磁波,其波長在760奈米(nm)至1毫米(mm)之間,是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內。室溫下物體所發出的熱輻射多都在此波段。 红外线是在1800年由天文學家威廉·赫歇爾發現,他發現有一種頻率低于紅色光的輻射,雖然用肉眼看不見,但仍能使被照射物體表面的溫度上昇。太陽的能量中約有超過一半的能量是以红外线的方式進入地球,地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。 當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射。 红外线可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。红外线穿透云雾的能力比可见光强,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、红外天文学及遠紅外線天文學可在天文學中應用红外线的技術。.

哈勃空间望远镜和红外线 · 红外线和老人增四 · 查看更多 »

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

哈勃空间望远镜和纳米 · 纳米和老人增四 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

哈勃空间望远镜和美国国家航空航天局 · 美国国家航空航天局和老人增四 · 查看更多 »

角秒

角秒,又稱弧秒,是量度平面角的單位,即角分的六十分之一,符號為″。在不會引起混淆時,可簡稱作秒。「角秒」二字只限用於描述角度,不能於其他以「秒」作單位的情況使用(如時間)。.

哈勃空间望远镜和角秒 · 老人增四和角秒 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

哈勃空间望远镜和變星 · 老人增四和變星 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

哈勃空间望远镜和恒星 · 恒星和老人增四 · 查看更多 »

木星

|G1.

哈勃空间望远镜和木星 · 木星和老人增四 · 查看更多 »

上面的列表回答下列问题

哈勃空间望远镜和老人增四之间的比较

哈勃空间望远镜有124个关系,而老人增四有115个。由于它们的共同之处11,杰卡德指数为4.60% = 11 / (124 + 115)。

参考

本文介绍哈勃空间望远镜和老人增四之间的关系。要访问该信息提取每篇文章,请访问: