徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

呼吸作用

指数 呼吸作用

呼吸作用,又称為细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解並转化能量的化學过程,也稱為釋放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核細胞中,粒線體是與呼吸作用最有關聯的胞器,呼吸作用的幾個關鍵性步驟都在其中進行。 呼吸作用是一種酶促氧化反应。雖名為氧化反應,不論有否氧气参与,都可称作呼吸作用(這是因為在化學上,有電子轉移的反應過程,皆可稱為氧化)。有氧气参与時的呼吸作用,稱之為有氧呼吸;没氧气参与的反應,則称为无氧呼吸。 呼吸作用的目的,是透過釋放食物裡之能量,以製造三磷酸腺苷,即細胞最主要的直接能量供應者。呼吸作用的氢與氧的燃燒,但兩者間最大分別是:呼吸作用透過一連串的反應步驟,一般的一次性釋放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂質的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透過數個步驟,将能量转移到还原性氢(化合价为0的氢)中。最後經過一連串的電子傳遞鏈,氢被氧化生成水;原本貯存在其中的能量,則转移到ATP分子上,供生命活动使用。.

79 关系: 原核生物三磷酸腺苷三羧酸循环一致性丙酮酸乳酸乳酸菌乙醇乙醛乙酰辅酶A人体二磷酸腺苷二羥丙酮磷酸二氧化碳底物水平磷酸化化合价化学反应化學分子呼吸光合作用硝酸盐硫酸根碳水化合物磷酸糖类糖酵解細胞器細胞質線粒體细菌细胞细胞膜细胞色素羧基真核生物烟酰胺腺嘌呤二核苷酸热力学自由能生物甘油甘油磷酸穿梭电子焦耳營養物質食物質子黄素腺嘌呤二核苷酸辅酶还原...能量能量轉換效率葡萄糖肌肉脂類脂肪脂肪酸自养生物酶促反应苹果酸-天冬氨酸穿梭電子傳遞鏈蛋白质通道蛋白氧化氧化磷酸化氧气氨基酸水解水溶液气体液体有机化合物摩尔3-磷酸甘油醛 扩展索引 (29 更多) »

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N. "Biology:Concepts & Connections".

新!!: 呼吸作用和原核生物 · 查看更多 »

三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

新!!: 呼吸作用和三磷酸腺苷 · 查看更多 »

三羧酸循环

三羧酸循環(tricarboxylic acid cycle) ,亦作檸檬酸循環(citric cycle),是有氧呼吸的第二階段。該循環以循環中一個重要中間體檸檬酸命名,又因爲檸檬酸是一種,該反應又稱爲三羧酸循環。該循環亦因由德國生物化學家克雷布斯(Krebs)發現而稱爲克雷布斯循環(Krebs cycle),克雷布斯亦因此項貢獻獲1953年諾貝爾生理學或醫學獎。丙酮酸在經過丙酮酸脫氫酶系氧化,生成乙酰輔酶A(acetyl-CoA)後,與四碳二元羧酸草酰乙酸化合,生成檸檬酸,進入檸檬酸循環。隨後,經過一系列反應,兩個碳原子轉化爲二氧化碳(CO2)分子,檸檬酸中蘊藏的化學能轉化至還原的輔酶中。檸檬酸循環的終產物仍然是草酰乙酸,這使得該循環能源源不斷地氧化輸入循環的乙酰輔酶A。 一般情況下,檸檬酸循環產生的還原輔酶會連同糖酵解過程產生的還原輔酶一同,在氧化磷酸化過程中氧化,生成大量的ATP。一分子的乙酰輔酶A在被檸檬酸循環代謝後,可產生兩分子的CO2分子、三分子NADH、一分子FADH2,以及一分子GTP。 檸檬酸循環可以代謝糖類、脂質,以及大部分氨基酸,因爲這三類物質都能轉換爲乙酰輔酶A或檸檬酸循環的中間體,從而進入檸檬酸循環之中。另外,檸檬酸循環的許多中間體可供生物體利用。當中間產物不足時,可通過添補反應對中間產物進行補充。生物體最重要的填補反應是在丙酮酸羧化酶催化下,以一分子丙酮酸和一分子二氧化碳分子爲原料,合成一分子草酰乙酸的反應。 檸檬酸循環發生於線粒體基質中,但也會部分地在線粒體內膜或嵴膜上發生。.

新!!: 呼吸作用和三羧酸循环 · 查看更多 »

一致性

#重定向 一致.

新!!: 呼吸作用和一致性 · 查看更多 »

丙酮酸

丙酮酸(pyruvic acid,化學式:CH3COCOOH)是一種α-酮酸,其燃点为82 °C,在生物化學代謝途徑中扮演重要角色。丙酮酸的羧酸鹽陰離子(carboxylate anion)被稱之為丙酮酸鹽(pyruvate,這個字在中文裡也經常簡單地稱作丙酮酸)。.

新!!: 呼吸作用和丙酮酸 · 查看更多 »

乳酸

乳酸(IUPAC學名:2-羥基丙酸)是一种化合物,它在多种生物化学过程中起作用。它是一种羧酸,分子式是C3H6O3。它是一个含有羟基的羧酸,因此是一个α-羟酸(AHA)。在水溶液中它的羧基释放出一个质子,而产生乳酸根离子CH3CHOHCOO−。 乳酸有手性,有两个旋光异构体。一个被称为L-(+)-乳酸或(S)-乳酸,另一个被称为D-(-)-乳酸或(R)-乳酸。L-(+)-是在生物学上重要的异构体。.

新!!: 呼吸作用和乳酸 · 查看更多 »

乳酸菌

乳酸菌,可能指:.

新!!: 呼吸作用和乳酸菌 · 查看更多 »

乙醇

乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.

新!!: 呼吸作用和乙醇 · 查看更多 »

乙醛

乙醛,又称醋醛,属醛类,是一种具有分子式CH3CHO或MeCHO的有机化合物。由于在大自然当中存在广泛以及工业上的大规模生产,乙醛认为是醛类当中最重要的化合物之一。乙醛可存在于咖啡,面包,成熟的水果中,它还可以通过植物作为代谢产物而生成。乙醇在被氧化後生成為乙醛且被认为是宿醉的成因。 乙醛常温下为液态,无色、可燃,有刺鼻的气味。其熔点为-123.5℃,沸点为20.2℃。可以被还原为乙醇,也可以被氧化成乙酸。.

新!!: 呼吸作用和乙醛 · 查看更多 »

乙酰辅酶A

乙酰辅酶A(acetyl-CoA)是活化了的乙酸,由乙酰基(CH3CO-)与辅酶A的巯基以高能的硫酯键相连。乙醯輔酶A是脂肪酸的β-氧化及糖酵解后产生的丙酮酸脱羧後的产物。 在三羧酸循环的第一步,乙酰基转移到草酰乙酸中,生成柠檬酸,--。.

新!!: 呼吸作用和乙酰辅酶A · 查看更多 »

人体

人体是一个人的整个结构。 它由许多不同类型的细胞组成,一起产生组织和随后的器官系统。 它们确保体内稳态和人体的 Category:人体解剖学.

新!!: 呼吸作用和人体 · 查看更多 »

二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

新!!: 呼吸作用和二磷酸腺苷 · 查看更多 »

二羥丙酮磷酸

二羥丙酮磷酸(Dihydroxyacetone phosphate;DHAP)是一種生物化學分子,參與多種反應途徑,包括卡爾文循環等多種植物生理代謝,以及糖解作用。.

新!!: 呼吸作用和二羥丙酮磷酸 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 呼吸作用和二氧化碳 · 查看更多 »

底物水平磷酸化

底物水平磷酸化(substrate-level phosphorylation--是指一类ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程。 除了发生在糖酵解和三羧酸循环之中的底物水平磷酸化之外,制造腺苷三磷酸的另一条路径是氧化磷酸化作用,这一作用发生在细胞呼吸的过程之中。在氧化磷酸化期间,还原型烟酰胺腺嘌呤二核苷酸被氧化为氧化型烟酰胺腺嘌呤二核苷酸,生成2.5分子的腺苷三磷酸,而还原黄素腺嘌呤二核苷酸被氧化时则生成1.5分子的腺苷三磷酸。氧化磷酸化利用跨线粒体膜的电化学或化学渗透质子梯度以生产腺苷三磷酸,这点是与底物水平磷酸化之间最大的不同。 不像氧化磷酸化,氧化与磷酸化这两个过程在底物水平磷酸化过程中并未联系在一起,尽管这两种磷酸化都会使得腺苷三磷酸生成并且在分解代谢的氧化过程中常会得到活性中间体。然而通常情况下多数的腺苷三磷酸是在有氧或无氧呼吸的氧化磷酸化过程中形成的。底物水平磷酸化充当腺苷三磷酸的快速来源,而不依赖额外的电子受体以及呼吸作用。这种情况例如人类红细胞,其中没有线粒体,或是缺氧状态下的肌肉细胞。底物水平磷酸化的主要部分发生在细胞质中,为糖酵解的一部分;以及在有氧与无氧环境中的线粒体中,为三羧酸循环的一部分。 在糖酵解的放能阶段,底物水平磷酸化生成了四分子的腺苷三磷酸:其中两分子是在1,3-二磷酸甘油酸转变为3-磷酸甘油酸的过程中被磷酸甘油酸激酶将磷酸基转到腺苷二磷酸上的;另外两分子是在磷酸烯醇式丙酮酸转变为丙酮酸的过程中被丙酮酸激酶将磷酸基转到腺苷二磷酸上的。第一步是在3-磷酸甘油醛与一分子的无机磷酸被磷酸甘油醛脱氢酶转变为1,3-二磷酸甘油酸之后发生的。在接下来独立的步骤(区别于氧化磷酸化的重要步骤)中,通过磷酸甘油酸激酶的作用,将1,3-二磷酸甘油酸分子上的高能磷酸基团转移到腺苷二磷酸上,生成3-磷酸甘油酸。因为腺苷三磷酸从无机磷酸基团中生成出来,此步骤导致了糖酵解过程中的能量收获。第二个底物水平磷酸化在之后发生:在丙酮酸激酶的作用下通过磷酸烯醇式丙酮酸(PEP)反应而生成丙酮酸。此反应重新生成了在糖酵解准备阶段用于将葡萄糖活化为葡萄糖-6-磷酸以及将果糖-6-磷酸活化为果糖-1,6-二磷酸而耗去的腺苷三磷酸。 一旦糖酵解的产物丙酮酸进入线粒体基质,丙酮酸就被转变为乙酸酯并结合到辅酶A上以生成乙酰辅酶A并进入三羧酸循环。然而三羧酸循环是需氧呼吸,底物水平磷酸化的另一个例子就发生在琥珀酰辅酶A转换为琥珀酸时,鸟苷二磷酸通过被转上一个磷酸基团而生成了鸟苷三磷酸(GTP)。此磷酸基团在另一个底物水平磷酸化事件中被转移到腺苷二磷酸上。催化此反应的酶是琥珀酰辅酶A合成酶。 另一种形式的底物水平磷酸化见于工作中的骨骼肌与大脑之中。磷酸肌酸作为一种便利现成的补充物被储存起来,肌酸磷酸激酶将磷酸基团从磷酸肌酸转移到腺苷二磷酸上而生成腺苷三磷酸。接着腺苷三磷酸释放所汇存的化学能。 除此之外,底物水平磷酸化亦在发酵过程中见得到,例如异质乳酸发酵、丁酸发酵与丙酸发酵等。 Category:细胞呼吸.

新!!: 呼吸作用和底物水平磷酸化 · 查看更多 »

化合价

化合價(Valence)是由一定元素的原子構成的化學鍵的數量。一個原子是由原子核和外圍的電子构成的,電子在原子核外圍是分層運動的,化合物的各個原子是以和化合價同樣多的化合鍵互相連接在一起的IUPAC Gold Book definition: 。 元素周圍的價電子形成價鍵,單價原子可以形成一個共價鍵,雙價原子可形成兩個σ键或一個σ键加一個π键The Free Dictionary: 。 共價,在1919年,Irving Langmuir利用這個詞解釋Gilbert N. Lewis的立方體原子模型,任一原子和周圍原子之間成對電子的分享叫做原子的共價,例如,如果有+1價,代表需要丢掉一個電子才能變成完整的價電子數;反之,如果是-1價時,則需要得到一個電子才會變成完整的價電子數,因此在這兩個原子之間的鍵結電子能互相的補充或分享他們的電子以至形成穩定的價電子數。在這之後,“共價”的詞比“價”更能被敘述、討論。.

新!!: 呼吸作用和化合价 · 查看更多 »

化学反应

化學反應是一個或一個以上的物質(又稱作反應物)經由化學變化转化為不同於反應物的产物的過程。 化學變化定義為當一個接觸另一個分子合成大分子;或者分子經斷裂分開形成兩個以上的小分子;又或者是分子內部的原子重組。為了形成變化,化學反應通常和化學鍵的形成與斷裂有關。特別注意化學反應不會以任何方式改變原子核,而仅限於在原子外的電子雲交互作用。雖然核變形後可能會引發化學反應,但是核反應與化學反應無關。 化學性質是物質只能在化學變化中表現出來的性質,例如有酸鹼性、氧化还原性质、熱穩定性、反应性等等。.

新!!: 呼吸作用和化学反应 · 查看更多 »

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

新!!: 呼吸作用和化學 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

新!!: 呼吸作用和分子 · 查看更多 »

呼吸

呼吸(breathing),生物的一種生理現象,為一種生物細胞的生化作用(稱作「呼吸作用」)所呈現出來的外在生理現象,動物及植物皆有。一般人的認知,則是指高等生物,尤其是人類利用肺部吸入與呼出空氣的過程。不過也有一些動物用其他器官進行氣體交換,例如魚類的鳃以及节肢动物的氣門。 呼吸是維持生物體生存需要的生理學呼吸中的一部份。氧氣動物需要空氣供給細胞新陳代謝和製造能量的來源,能量通常是透過動物所攝取中的食物澱粉所製成的葡萄糖。而把葡萄糖轉化為能量的方法有兩種,一為有氧呼吸(大部分的動物、昆蟲、細菌)和無氧呼吸(少部分的細菌)。有氧呼吸是把氧氣分子轉化為二氧化碳,從中獲取所需的能量。 而呼吸的另一個重要的部份為循環系統把二氧化碳排放掉再把新的氧氣由血液送到需要的細胞。氣體交換是在肺的肺泡中由氣體粒子被動擴散所達成的,所以不需要使用能量。當氣體溶於血液中時,左心臟把血液打到全身體各個細胞。由於肺泡呼吸的表面需要易於空氣的穿越,所以表面並不是完全乾燥的,由所產生的液體,讓表面濕介而增加空氣的穿透力,所以呼吸會導致水分的流失,尤其是排放二氧化碳的時候。 人類的許多輔助功能也和呼吸有關,例如說話、表達情緒(笑、打哈欠)、自主 维护活动(咳嗽和打喷嚏等),而不能由皮膚排汗的動物也需要透過喘气進行體溫調節。.

新!!: 呼吸作用和呼吸 · 查看更多 »

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

新!!: 呼吸作用和光合作用 · 查看更多 »

硝酸盐

硝酸鹽是一個多原子離子其分子式NO3−和分子量62.0049克/mol。硝酸鹽同樣描述為有機官能團RONO2。這些硝酸酯是一專業炸藥。 CP#3是硝酸根离子NO3−形成的盐。许多金属都能形成硝酸盐,包括无水盐或水合物。.

新!!: 呼吸作用和硝酸盐 · 查看更多 »

硫酸根

硫酸根的化学式为SO42−,是硫酸二级电离出的负离子。.

新!!: 呼吸作用和硫酸根 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 呼吸作用和碳 · 查看更多 »

碳水化合物

#重定向 糖类.

新!!: 呼吸作用和碳水化合物 · 查看更多 »

磷酸

磷酸(phosphoric acid)或稱為正磷酸(orthophosphoric acid),化學式H3PO4,是一种常见的无机酸,不易挥发,不易分解,几乎没有氧化性。具有酸的通性,是三元中强酸,其酸性比盐酸、硫酸、硝酸弱,但比醋酸、硼酸等强。由五氧化二磷溶于热水中即可得到。正磷酸工业上用硫酸处理磷灰石即得。用硝酸使磷氧化,可以得到较纯的磷酸;一般是83%-98%的稠厚溶液,如果再浓缩,可以得到无色晶体。磷酸在空气中容易潮解;加热会逐渐失水得到焦磷酸,进一步失水得到偏磷酸。磷酸容易自行結合成多種化合物如焦磷酸(pyrophosphoric acid)或三聚磷酸(triphosphoric acid)等。 除了用作化学试剂之外,磷酸也可主要用于制药、鐵銹轉化劑、食品添加物、溶劑、電解液、肥料、冶金、飼料等,也有在醫學美容及牙科的用途。 磷酸為三元酸,可解離出三個氫離子,因此可形成三種不同的酸根,分別是:磷酸二氫根、磷酸氫根以及磷酸根。.

新!!: 呼吸作用和磷酸 · 查看更多 »

糖类

醣類(Carbohydrate)又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氫與氧三種元素所組成,廣布于自然界。醣類的另一個名稱为“碳水化合物”,其由來是根据生物化学家先前發現一类物质可写成经验分子式:Cn(H2O)n,其氢与氧元素的比例始终为2:1,故以为醣類是碳和水的化合物;但后来的发现证明了许多糖类并不符合上述分子式,如:鼠李糖(C6H12O5);而有些物質符合上述分子式却不是糖类,如甲醛(CH2O)等。醣類為人體之重要的營養素,主要分成三大類:單醣、雙醣和多醣。在一般情況下,單醣和雙醣是較小的(低分子量)的碳水化合物,通常稱為--。例如,葡萄糖是單醣,蔗糖和乳糖是雙醣(見圖示)。 糖类在生物体上扮演著众多的角色,像多醣可作为儲存養分的物質,如澱粉和糖原;或作为動物外骨骼和植物細胞的細胞壁,如:甲殼素和纖維素;另如五碳醛醣的核糖是構成各種輔因子的不可或缺失之物質,如ATP、FAD和NAD)也是一些遺傳物質分子的骨幹(如 DNA和 RNA)。醣類的眾多衍生物同時也與免疫系統、受精、預防疾病、血液凝固和生長等有極大的關聯。 在食品科學和其他非正式的場合中,碳水化合物通常是指:富有澱粉(如五穀類、麵包或麵食)或簡單的醣類的食物(如食糖)。.

新!!: 呼吸作用和糖类 · 查看更多 »

糖酵解

糖酵解(glycolysis--是把葡萄糖(C6H12O6)转化成丙酮酸(CH3COCOO− + H+)的代谢途径。在这个过程中所释放的自由能被用于形成高能量化合物ATP和NADH。 糖解作用是所有生物细胞糖代谢過程的第一步。糖解作用是一个有10个步骤酶促反应的确定序列。在该过程中,一分子葡萄糖会经过十步酶促反应转变成两分子丙酮酸(严格来说,应该是丙酮酸盐,即是丙酮酸的阴离子形式)。 糖解作用及其各种变化形式发生在几乎所有的生物中,无论是有氧和厌氧。糖酵解的广泛发生显示它是最古老的已知的代谢途径之一。事实上,糖解作用及其并行途径戊糖磷酸途径,构成了反应,这些反应发生在还在不存在酶的条件下进行金属催化的太古宙海洋。糖解作用可能因此源于生命出现之前世界的化学约束。 糖解作用发生在大多数生物体中的细胞的胞质溶胶。最常见的和研究最彻底的糖解作用形式是双磷酸己糖降解途径(Embden-Meyerhof-Parnas途径,简称:EMP途径),这是被Gustav Embden,奥托·迈尔霍夫,和Jakub Karol Parnas所发现的。糖解作用也指的其他途径,例如,脱氧酮糖酸途径()各种异型的和同型的发酵途径,糖解作用一词可以用来概括所有这些途径。但是,在此处的讨论却是局限于双磷酸己糖降解途径(EMP途径)。 整个糖解作用途径可以分成两个阶段:.

新!!: 呼吸作用和糖酵解 · 查看更多 »

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

新!!: 呼吸作用和細胞器 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 呼吸作用和細胞質 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 呼吸作用和線粒體 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 呼吸作用和细菌 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 呼吸作用和细胞 · 查看更多 »

细胞膜

细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.

新!!: 呼吸作用和细胞膜 · 查看更多 »

细胞色素

细胞色素(英文:cytochrome)一般是指一类膜结合的血红素蛋白,以血基質为辅基,参与电子传递。它可以以单体的形式(如细胞色素c)或作为复合物酶中的一个亚基来发挥氧化还原作用。细胞色素是各种生物体中都很常见的蛋白质,广泛存在于真核生物的线粒体内膜和内质网中,植物的叶绿体中,以及光合成微生物和细菌中。.

新!!: 呼吸作用和细胞色素 · 查看更多 »

羧基

基(化學式–COOH)是羧酸所具有的官能团。一般而言,羧基上的氢有较大的电离倾向,从而使羧酸在水溶液中显酸性。羧酸根负离子所具有共轭结构可以看作是氢易电离的潜在动力。.

新!!: 呼吸作用和羧基 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 呼吸作用和真核生物 · 查看更多 »

烟酰胺腺嘌呤二核苷酸

烟酰胺腺嘌呤二核苷酸(简称:辅酶Ⅰ,Nicotinamide adenine dinucleotide,NAD+),是一种转递質子(更准确来说是氢离子)的辅酶,它出现在细胞很多代谢反应中。NADH或更准确NADH + H+是它的还原形式,最多携带两个質子(写为NADH + H+),其標準電極電勢為-0.32V。 NAD+是脱氢酶的辅酶,如乙醇脱氢酶(ADH),用于氧化乙醇。它在糖酵解、糖异生、三羧酸循环及呼吸链中发挥着不可替代的作用。中间产物会将脱下的氢递给NAD,使之成为NAD + H+。 而NAD+ H+则会作为氢的载体,在電子傳遞鏈中通过化学渗透偶联的方式,合成ATP。 在吸光方面,NADH在260nm和340nm处各有一吸收峰,而NAD+则只有260nm一处吸收峰,这是区别两者的重要属性。这同时也是很多代谢试验中,测量代谢率的物理依据。NAD在260nm的吸光系数为1.78x104L /(mol·cm),而NADH在340nm的吸光系数为6.2x103 L/(mol·cm)。 在生物體內中,NAD可以由簡單的構建塊與氨基酸色氨酸或天冬氨酸合成。以替代方式,將更複雜的酶組合從食物中攝取,這維生素被稱為烟酸。通過分解NAD結構的反應釋放相似的化合物。這些預製組件然後通過一個回收通道,將其回收成活性形式。一些NAD也轉化為煙酰胺腺嘌呤二核苷酸磷酸(NADP);這種相關輔酶的化學成分與NAD類似,但在新陳代謝中具有不同的作用。在代謝中,NAD+參與氧化還原反應,將電子從一個反應攜帶到另一個反應。因此,輔酶在細胞中以兩種形式存在:NAD+是一種氧化劑,能接受來自其他分子的電子。該反應形成NADH,然後又可以用作為還原劑來給電子。這些電子轉移反應是NAD的主要功能。然而,它也用於其他細胞過程中,最顯著的是添加或除去蛋白質中的化學基團的酶的底物。由於這些功能的重要性,發現NAD代謝的酶是藥物的目標。儘管NAD+在特定氮原子上的正電荷而被寫入上標加號,但在生理pH大部分情況下,實際上是單電荷的陰離子(負電荷為1),而NADH為雙電荷陰離子。.

新!!: 呼吸作用和烟酰胺腺嘌呤二核苷酸 · 查看更多 »

热力学自由能

热力学自由能(英语:Thermodynamic free energy)是指一个热力学系统的能量中可以用来对外做功的部分,是热力学态函数。自由能可以作为一个热力学过程能否自发进行的判据。 对限定条件不同的热力学过程,热力学自由能有不同表达形式。最常见的有吉布斯自由能G和亥姆霍兹自由能A(或F)。等温等容过程用亥姆霍兹自由能 A.

新!!: 呼吸作用和热力学自由能 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 呼吸作用和生物 · 查看更多 »

甘油

丙三醇又称甘油,結構簡式為HOCH2CHOHCH2OH或C3H5(OH)3,分子式為C3H8O3。.

新!!: 呼吸作用和甘油 · 查看更多 »

甘油磷酸穿梭

油磷酸穿梭(Glycerol phosphate shuttle,又称为甘油3-磷酸穿梭)是一种让糖酵解副产物还原型烟酰胺腺嘌呤二核苷酸重新生成为其氧化型的一种机制。它在传递还原性等效物的重要性上仅次于苹果酸-天冬氨酸穿梭。.

新!!: 呼吸作用和甘油磷酸穿梭 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 呼吸作用和电子 · 查看更多 »

焦耳

耳(簡稱焦)是國際單位制中能量、功或热量的導出單位,符号為J。在古典力學裏,1焦耳等於施加1牛頓作用力經過1公尺距離所需的能量(或做的機械功)。在電磁學裏,1焦耳等於將1安培電流通過1歐姆電阻1秒時間所需的能量。焦耳是因紀念物理學家詹姆斯·焦耳而命名。 以其它單位表示, 1焦耳也可以定義.

新!!: 呼吸作用和焦耳 · 查看更多 »

營養物質

#重定向 營養素.

新!!: 呼吸作用和營養物質 · 查看更多 »

食物

食物通常以碳水化合物、脂肪、蛋白質或水構成,能夠藉由進食或是飲用為人類或者生物提供營養或愉悅的物質。食物的來源可以是植物、動物或者其他界的生物,例如真菌,亦或發酵產品像是酒精。生物攝取食物後,被生物的細胞同化,提供能量,維持生命及刺激成長。 在歷史上,人類主要是透過狩獵採集者及耕種兩種方式獲得食物,其餘的還有畜牧、釣魚等。現在日益增加的世界人口中,大部份需要的食物熱量是由食品产业提供。 有許多機構在監控食品衛生及食品安全,包括、、世界糧食計劃署、聯合國糧食及農業組織及。他們關注的議題包括可持續性、生物多樣性、氣候變化、、人口自然增长率、供水及食品安全。 食物權是經濟、社會及文化權利國際公約(ICESCR)提出的人权之一 ,認可「有適當生活水平的權利,包括適當的食物」也就是「免於飢餓的自由。.

新!!: 呼吸作用和食物 · 查看更多 »

質子

|magnetic_moment.

新!!: 呼吸作用和質子 · 查看更多 »

黄素腺嘌呤二核苷酸

素腺嘌呤二核苷酸(FAD),又称活性型维生素B2、核黄素-5'-腺苷二磷酸,是一种参与了重要的代谢反应的氧化还原辅酶。FAD是一种比NAD和NADP更强的氧化剂,能被1个电子或2个电子途径还原。.

新!!: 呼吸作用和黄素腺嘌呤二核苷酸 · 查看更多 »

辅酶

輔酶是有機非蛋白小分子,其用途為在酵素(酶)內載運化學基。許多輔酶是磷化水溶性維他命。但非維他命物質也可能是輔助,如ATP-磷酸基的生化載具。 輔酶被消耗在其幫助的反應上,如NADH輔酶被氧化還原反應轉化至NAD+。但輔酶是會再產生的,且其在細胞內的濃度會維持在一穩定的程度。 輔酶的一特殊子集為輔基。其輔因子(或稱輔助因子)會緊緊黏在酵素上,且不會在反應中被消耗。輔基包含有鉬蝶呤、硫辛胺和生物素。 酶蛋白與輔酶單獨存在時,一般無催化能力,只有二者結合成完整的分子時,才具有活性 ,此完整的酶分子稱為全酶。.

新!!: 呼吸作用和辅酶 · 查看更多 »

还原

还原是一种化工单元过程。在化学反应中,还原反应是氧化反应的逆过程,即是得到电子的过程,因为有一方失去电子,就会有另一方得到电子。因此,还原反应经常和氧化反应合在一起,被称为氧化还原反应。但在化工领域,目的只是在于所要得到的产品,氧化过程是要得到氧化产物,并不关心氧化剂的变化,还原也是只关心还原产物,不在乎还原剂,所以两种过程不能放到一起。 一般工业常用的还原剂有氢气、一氧化碳、铁屑、锌粉等易于被氧化而氧化后生成无害产物的物质。 还原过程在工业中的应用有:.

新!!: 呼吸作用和还原 · 查看更多 »

胺(英語:amine)是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物。氨基(-NH2、-NHR、-NR2)是胺的官能团。 如果氮原子连着羰基(C.

新!!: 呼吸作用和胺 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 呼吸作用和能量 · 查看更多 »

能量轉換效率

能量轉換效率是指一個能量轉換設備所輸出可利用的能量相對其輸入能量的比值。輸出的可利用能量可能是電能、機械功或是熱量。能量轉換效率沒有一致的定義,主要和輸出能量可利用的程度有關。 \eta.

新!!: 呼吸作用和能量轉換效率 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 呼吸作用和葡萄糖 · 查看更多 »

肌肉

肌肉(英語:muscle)是一種能收縮的動物組織,屬於,由胚胎的中胚層發育而來。肌肉細胞有收縮纖維,會在細胞間移動並改變細胞的大小。 肌肉分為骨骼肌、心肌和平滑肌三種,其功能皆為產生力並導致運動。心肌和平滑肌的收縮不由意識控制且為生存所必需,例如心臟的收縮或是腸胃道的蠕動等。骨胳肌的自主收縮用來移動身體且能夠被精細地控制,例如眼睛的運動或大腿股四頭肌的總體運動。自主肌肉纖維分成快慢兩種,慢肌纖維可以持續較長的時間,但力量較小;快肌纖維收縮地較快,力量也較大,但也較快感到疲勞。.

新!!: 呼吸作用和肌肉 · 查看更多 »

脂類

脂類(英語:Lipid),又稱脂質,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蠟、类固醇、脂溶性維生素(如維生素A,D,E和K)、、、磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導等。如今,脂类已经被用于美容和食品工业,以及纳米技术。 脂質可以廣義定義為疏水性或雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡、脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基與異戊二烯。由此,脂質可以概分為八類:脂肪酸、甘油酯、甘油磷脂、鞘脂(神經脂質)、、聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)。 脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代謝產物,像是膽固醇。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。 有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。.

新!!: 呼吸作用和脂類 · 查看更多 »

脂肪

脂肪(Fat)是室温下呈固态的油脂(室溫下呈液態的油脂稱作油),多来源于人和动物体内的脂肪组织,是一種羧酸酯,由碳、氫、氧三種元素組成。與醣類不同,脂肪所含的碳、氫的比例較高,而氧的比例較低,所以發熱量比醣類高。脂肪最後產生物是膽固醇(形成血栓)。脂肪組織是絕大多數脊椎動物特有的構造,可以使之一段時間不進食,而不會能量耗竭而死;脂肪體則為昆蟲特有,主代謝類似脊椎動物的肝。 脂肪是由甘油和脂肪酸組成的三酰甘油酯,其中甘油的分子比較簡單,而脂肪酸的種類和長短卻不相同,包括飽和脂肪酸、單不飽和脂肪酸、多不飽和脂肪酸。 食用脂肪是人可直接食用或烹调的油脂,主要成分是三酸甘油酯,也就是中性脂肪。脂肪是常見的食物營養素之一,亦是三種提供能量的營養之一。 食物中的脂肪在腸胃中消化,吸收後大部分又再度轉變為脂肪。它主要分佈在人體皮下組織、大網膜、腸繫膜和腎臟周圍等處。體內脂肪的含量常隨營養狀況、能量消耗等因素而變動。 過多的脂肪讓我們行動不便,而且血液中過高的血脂,很可能是誘發高血壓和心臟病的主要因素。.

新!!: 呼吸作用和脂肪 · 查看更多 »

脂肪酸

脂肪酸(Fatty acid)是一类羧酸化合物,由碳氫组成的烃类基团连结-zh-hant:羧基;zh-hans:羧酸;-所構成。 三个长链脂肪酸与甘油形成三酸甘油酯(Triacylglycerols),為脂肪的主要成分,歸於脂類。.

新!!: 呼吸作用和脂肪酸 · 查看更多 »

自养生物

自养生物,也稱為生产者,--,主要包括绿色植物和少数微生物,它们可以利用阳光、空气中的二氧化碳、水以及土壤中的无机盐等,通過光合作用或化能合成等生物過程制造有机物,为生態系统中各種生物的生活提供物質和能量。生產者的物質通過被消費者消耗,而被轉移至消費者身上,同時一部份能量亦會一併轉移。.

新!!: 呼吸作用和自养生物 · 查看更多 »

酶促反应

酶促反应(又称酶催化)是指由一类被称为酶的特殊蛋白质所催化的化学反应。因为非催化反应的速率特别慢,故细胞中生物化学反应的催化作用就显得极重要。 酶促反应的机制与其他类型的化学催化在原理上很相似。酶通过提供替代反应路线以及稳定中间产物的方法,减少了为达到最高能量过渡态时的能量需求。活化能(Ea)的减少增加了具有足够达到活化能并形成产物的反应物分子的数量。.

新!!: 呼吸作用和酶促反应 · 查看更多 »

苹果酸-天冬氨酸穿梭

苹果酸-天冬氨酸穿梭(malate-aspartate shuttle,也称为苹果酸穿梭)是真核细胞中一个转运在糖酵解过程中传出的电子跨越半通透性的线粒体内膜以进行氧化磷酸化的生物化学体系。这些电子以还原性等效物的形式进入线粒体的电子传递链中以生成ATP。正因为线粒体内膜对于电子传递链的第一还原还原性等效物即还原型烟酰胺腺嘌呤二核苷酸(NADH)是不通透的,穿梭体系才有存在的必要。电子为了绕行,苹果酸携带着还原性等效物跨越线粒体膜。.

新!!: 呼吸作用和苹果酸-天冬氨酸穿梭 · 查看更多 »

電子傳遞鏈

電子傳遞鏈又稱呼吸鏈,是氧化磷酸化的一部分,位于原核生物細胞膜或者真核生物的粒線體内膜上,葉綠體在類囊體膜上所進行的進行光合磷酸化過程,高能電子在膜上一系列蛋白傳送的過程,藉由膜蛋白的氧化與還原將其能量逐漸釋放出來,造成膜外與膜內質子濃度的差異(proton-gradient),而這些質子再由高濃度往低濃度運送,及一對質子(H+離子)的轉移這電子轉移穿膜,這產生的電化學質子濃度的差異驅動ATP合成,或形成化學能三磷酸腺苷(ATP)的產生。電子在電子傳遞鏈中的最終受體是氧分子。 電子傳遞鏈通過氧化還原反應,從陽光在光合作用中,或者如在醣類,細胞呼吸氧化的情況下獲取能量。在真核生物中,一個重要的電子傳遞鏈在線粒體內膜發現,通過使用ATP合成酶作氧化磷酸化反應。還發現在有光合作用的真核生物葉綠體的類囊體膜上。在細菌中電子傳輸鏈位於其細胞膜上。 在葉綠體中,光驅動水轉化為氧,並藉由傳遞H+離子跨越葉綠體膜轉化NADP+成NADPH。在粒線體中,則是將氧轉化成水,NADH至NAD+和琥珀酸鹽至富馬酸鹽建立質子梯度。 包括了四個膜蛋白複合物和脂溶性電子載體,用於將還原電勢轉化爲跨膜的質子梯度。.

新!!: 呼吸作用和電子傳遞鏈 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 呼吸作用和蛋白质 · 查看更多 »

通道蛋白

通道蛋白是一类跨越细胞膜磷脂双分子层的蛋白质,可以指:.

新!!: 呼吸作用和通道蛋白 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 呼吸作用和氢 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 呼吸作用和氧 · 查看更多 »

氧化

氧化又被称为氧化作用、氧化反应。是还原剂(被氧化物)与氧化剂(被还原物)之间的氧化数升降。还原剂的氧化数上升(失去电子),氧化剂的氧化数下降(获得电子)。 一般物质与氧气发生氧化时放热,个别可能吸热,如氮气与氧气的反应。电化学中阳极发生氧化,阴极发生还原。.

新!!: 呼吸作用和氧化 · 查看更多 »

氧化磷酸化

氧化磷酸化(oxidative phosphorylation,縮寫作 OXPHOS)是细胞的一种代谢途径,该过程在真核生物的线粒体内膜或原核生物的细胞膜上发生,使用其中的酶及氧化各类营养素所释放的能量来合成三磷酸腺苷(ATP)。虽然地球上的生物消耗的能源物质范围极广,为合成代谢直接提供能量的分子却几乎都是ATP。几乎所有的好氧性生物都以三羧酸循环-氧化磷酸化作为制造ATP的主要过程。该途径如此普遍的原因可能是:与其他的代谢途径,特别是糖酵解之类的无氧发酵途径相比,它能更高效地释放能量。 氧化磷酸化期间,电子在氧化还原反应中从电子供体转移到电子受体,例如氧。氧化还原反应所释放的能量用于合成ATP。在真核生物中,这些氧化还原反应在一系列线粒体内膜上的蛋白质复合体的参与下完成,而在原核生物中,这些蛋白质存在于细胞膜间隙中。这一串蛋白质称为电子传递链。真核生物包含五种主要的蛋白质复合体,而原核生物中存在许多不同的酶,以便利用各种电子供体和受体。 在“电子传递”过程中,质子被电子流过电子传递链所释放的能量泵出线粒体内膜。这会以pH梯度和跨膜电势差的形式产生势能。储存的能量通过让质子顺梯度跨膜内流,由称为ATP合酶的大型酶所使用;这个过程称为化学渗透。这种酶在磷酸化反应过程中就像一台机械马达,酶的一部分在质子流的驱动下不停旋转,将二磷酸腺苷(ADP)合成为三磷酸腺苷。 虽然氧化磷酸化是新陈代谢的重要组成部分,它却会产生活性氧如超氧化物和过氧化氢,使自由基扩散开来,破坏细胞及造成病变,还有可能导致老化。该代谢途径中的酶也是许多药物和毒物所抑制的目标。.

新!!: 呼吸作用和氧化磷酸化 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 呼吸作用和氧气 · 查看更多 »

氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.

新!!: 呼吸作用和氨 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

新!!: 呼吸作用和氨基酸 · 查看更多 »

水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.

新!!: 呼吸作用和水 · 查看更多 »

水解

水解是一种化工单元过程,是物質與水反應,利用水形成新的物质的过程。通常是指鹽類的水解平衡。.

新!!: 呼吸作用和水解 · 查看更多 »

水溶液

水溶液是指溶劑是水的溶液。在化學反應中,若反應物或生成物為水溶液,一般會在其化學式右下方加上(aq)識別。例如食鹽NaCl的水溶液,會用NaCl(aq)表示。由於水是自然界蘊含豐富的良好溶劑,因此在化學中常用到水溶液。 具有疏水性的物質不溶於水中,而具有親水性的物質才能形成水溶液。像食鹽即為親水性的物質。若依照酸鹼電離理論,酸和鹼也是親水性物質。 物質是否溶於水,主要是根據物質和水之間是否可以產生強大的吸引力,而且需要大於水和水之間的分子间作用力。若將無法溶於水的固體物質加入水中,則會產生沉澱。 若水溶液可以有效的傳導電流,則水溶液中含有強電解質,反之則表示水溶液中只有弱電解質。強電解質是指在水中會完全解离的物質,而弱電解質在水中只會部份解离。 非電解質是指可以溶於水,但仍不會產生離子,仍保留分子完整性的物質。非電解質有糖、尿素、甘油和二甲基碸。 當計算有水溶液在內的化學反應時,一般需要知道溶液的濃度及體積莫爾濃度。 許多水溶液是透明的,但可能因為其中的離子不同,而產生不同的顏色。.

新!!: 呼吸作用和水溶液 · 查看更多 »

气体

气体是四种基本物质状态之一(其他三种分别为固体、液体、等离子体)。气体可以由单个原子(如稀有气体)、一种元素组成的单质分子(如氧气)、多种元素组成化合物分子(如二氧化碳)等组成。气体混合物可以包括多种气体物质,比如空气。气体与液体和固体的显著区别就是气体粒子之间间隔很大。这种间隔使得人眼很难察觉到无色气体。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制,沒有固定。气态物质的原子或分子相互之间可以自由运动。 氣體的特性介於液體和等离子体之間,氣體的溫度不會超過等离子体,氣體的溫度下限為簡併態夸克氣體,現在也越來越受到重視。高密度的原子氣體冷卻到非常低的低溫,可以依其統計特性分為玻色氣體和費米氣體,其他相態可以參照相態列表。.

新!!: 呼吸作用和气体 · 查看更多 »

液体

液体(Liquid)是物质的四个基本状态之一(其它状态有固体、气体、等离子体),没有确定的形状,但有一定体积,具有移动与转动等运动性。液体是由经分子间作用力结合在一起的微小振动粒子(例如原子和分子)组成。水是地球上最常见的液体。和气体一样,液体可以流动,可以容纳于各种形状的容器。有些液体不易被压缩,而有些则可以被压缩。和气体不同的是,液体不能扩散布满整个容器,而是有相对固定的密度。液体的一个与众不同的属性是表面张力,它可以导致浸润现象。 液体的密度通常接近于固体,而远大于气体。因此,液体和固体都被归为凝聚态物质。另一方面,液体和气体都可以流动,都可被称为流体。虽然液态水在地球上很丰富,但在已知的宇宙中,液态并不是最常见的物态。因为液体的存在需要相对较窄的温度和压强范围。宇宙中最常见的物态是气体(如星际云气)和等离子体(如恒星中)。.

新!!: 呼吸作用和液体 · 查看更多 »

有机化合物

有机化合物(Organische Verbindung;英語:organic compound、organic chemical),简称有机物,是含碳化合物,但是碳氧化物(如一氧化碳、二氧化碳)、碳酸、碳酸鹽、 碳酸氢盐、氰化物、硫氰化物、氰酸鹽、金屬碳化物(如電石)等除外。有机化合物有时也可被定义为碳氫化合物及其衍生物的總稱。有机物是生命產生的物質基礎,例如生命的起源——胺基酸即為一有機化合物。.

新!!: 呼吸作用和有机化合物 · 查看更多 »

摩尔

摩爾、莫耳、莫爾是一個音譯的詞,它可能是翻譯自Mole,More或Moore。.

新!!: 呼吸作用和摩尔 · 查看更多 »

3-磷酸甘油醛

#重定向 甘油醛3-磷酸.

新!!: 呼吸作用和3-磷酸甘油醛 · 查看更多 »

重定向到这里:

厌氧呼吸有氧呼吸无氧呼吸细胞呼吸需氧呼吸

传出传入
嘿!我们在Facebook上吧! »