我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

向量空间和泛函

快捷方式: 差异相似杰卡德相似系数参考

向量空间和泛函之间的区别

向量空间 vs. 泛函

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。. 传统上,泛函(functional)通常是指一種定義域為函數,而值域为实数的「函數」。换句话说,就是从函数组成的一个向量空间到实数的一个映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。 在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。 设S\ 是由一些函数構成的集合。所谓S\ 上的泛函就是S\ 上的一个实值函数。S\ 称为该泛函的容许函数集。 函数的变换某种程度上是更一般的概念,参见算子。.

之间向量空间和泛函相似

向量空间和泛函有1共同点(的联盟百科): 泛函分析

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

向量空间和泛函分析 · 泛函和泛函分析 · 查看更多 »

上面的列表回答下列问题

向量空间和泛函之间的比较

向量空间有36个关系,而泛函有12个。由于它们的共同之处1,杰卡德指数为2.08% = 1 / (36 + 12)。

参考

本文介绍向量空间和泛函之间的关系。要访问该信息提取每篇文章,请访问: