之间向量分析和散度相似
向量分析和散度有(在联盟百科)7共同点: 偏导数,四元數,高斯散度定理,通量,梯度,旋度,拉普拉斯算子。
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.
四元數
四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.
高斯散度定理
斯公式,又称为散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。 更加精确地说,高斯公式说明向量场穿过曲面的通量,等于散度在曲面圍起來的體積上的积分。直观地,所有源点的和减去所有汇点的和,就是流出這区域的淨流量。 高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。 在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。 这个定理是更一般的斯托克斯公式的特殊情形。.
向量分析和高斯散度定理 · 散度和高斯散度定理 ·
通量
通量,或稱流束是通過一個表面或一個物質的量,是一个物理学概念。在热学和流体力学领域中,是指在单位时间内通过单位面积的流量,它是一个向量;在电磁学领域中,是指在单位面积上垂直于其表面的磁场或电场的强度,它是一个标量。.
梯度
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在這點标量场增长最快的方向(當然要比較的話必須固定方向的長度),梯度的絕對值是長度為1的方向中函數最大的增加率,也就是說 |\nabla f|.
旋度
旋度(Curl)或稱回轉度(Rotation),是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。向量场每一点的旋度是一个向量,称为旋度向量。它的方向表示向量场在这一点附近旋度最大环量的旋转轴,它和向量场旋转的方向满足右手定则。旋度向量的大小则是这一点附近向量场旋转度的一个量化体现,定义为当绕着这个旋转轴旋转的环量与旋转路径围成的面元面积之比趋近于零时的极限。举例来说,假设一台滚筒洗衣机运行的时候,从前方看来,内部的水流是逆时针旋转,那么中心水流速度向量场的旋度就是朝前方向外的向量。.
拉普拉斯算子
在數學以及物理中,拉普拉斯算子或是拉普拉斯算符(Laplace operator, Laplacian)是由欧几里得空间中的一個函数的梯度的散度给出的微分算子,通常寫成 \Delta 、 \nabla^2 或 \nabla \cdot \nabla 。 這名字是為了紀念法国数学家皮耶-西蒙·拉普拉斯(1749–1827)而命名的。他在研究天体力学在數學中首次应用算子,当它被施加到一个给定的重力位(Gravitational potential)的时候,其中所述算子给出的质量密度的常数倍。經拉普拉斯算子運算為零∆f.
向量分析和拉普拉斯算子 · 拉普拉斯算子和散度 ·
上面的列表回答下列问题
- 什么向量分析和散度的共同点。
- 什么是向量分析和散度之间的相似性
向量分析和散度之间的比较
向量分析有38个关系,而散度有25个。由于它们的共同之处7,杰卡德指数为11.11% = 7 / (38 + 25)。
参考
本文介绍向量分析和散度之间的关系。要访问该信息提取每篇文章,请访问: