我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

同位素列表和𨧀

快捷方式: 差异相似杰卡德相似系数参考

同位素列表和𨧀之间的区别

同位素列表 vs. 𨧀

同位素列表列出了所有已知的化学元素的同位素。 此表由左到右按照原子序数的增长而排列,由下到上依照中子数目由少到多排列。 表格中的颜色表示各个同位素的半衰期(参见图例),表格边缘的颜色表示最稳定的核素的半衰期。. 𨧀(Dubnium)是一種化學元素,符號為Db,原子序為105。其名Dubnium源自位於俄羅斯的小鎮杜布納(Dubna),也是𨧀最早得到合成的地方。𨧀是一種人工合成元素,不出現於在自然界中,並具有放射性。其最穩定的已知同位素(𨧀-268)的半衰期約為28小時,这也是102号元素之后最长寿的同位素。 在元素週期表中,𨧀是一個d區元素,同時屬於錒系後元素。它位於第7週期和5族元素。化學實驗証實了𨧀的特性為鉭的較重的5族同系物。人們對𨧀的化學特性所知不多。 在1960年代,蘇聯和美國加州的實驗室製造了微量的𨧀元素。兩國未能確定彼此的發現次序,因此雙方科學家對其命名發生了爭論,直到1997年國際純粹與應用化學聯合會(IUPAC)確認了蘇聯的實驗室最早合成該元素,並為雙方妥協而取名為Dubnium。.

之间同位素列表和𨧀相似

同位素列表和𨧀有(在联盟百科)22共同点: 原子序数半衰期同位素化學元素元素周期表放射性𨨏𨭎5族元素

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

原子序数和同位素列表 · 原子序数和𨧀 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

半衰期和同位素列表 · 半衰期和𨧀 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

同位素和同位素列表 · 同位素和𨧀 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

化學元素和同位素列表 · 化學元素和𨧀 · 查看更多 »

元素周期表

化學元素週期表是根據原子序從小至大排序的化學元素列表。列表大體呈長方形,某些元素週期中留有空格,使化学性质相似的元素处在同一族中,如鹵素及惰性氣體。這使週期表中形成元素分區。由於週期表能夠準確地預測各種元素的特性及其之間的關係,因此它在化學及其他科學範疇中被廣泛使用,作為分析化學行為時十分有用的框架。 現代的週期表由德米特里·門捷列夫於1869年創造,用以展現當時已知元素特性的週期性。自此,隨--新元素的發現和理論模型的發展,週期表的外觀曾經過改變及擴張。通過這種列表方式,門捷列夫也預測一些當時未知元素的特性以填補週期表中的空格。其後發現的新元素的確有相似的特性,使他的預測得到証實。 化學元素週期表将各个化学元素依据原子序编号,并依此排列。原子序從1(氫)至118(Og)的所有元素都已被发现或成功合成,其中第113、115、117、118号元素在2015年12月30日獲得IUPAC的确认。 而其中直到鉲的元素都在自然界中存在,其--的(亦包括眾多放射性同位素)都是在實驗室中合成的。目前Og之後的元素的合成正在進行中,帶出如何擴展元素週期表的問題。.

元素周期表和同位素列表 · 元素周期表和𨧀 · 查看更多 »

鑪(Rutherfordium)是一種化學元素,符號為Rf,原子序為104。鑪是為紀念紐西蘭物理學家歐内斯特·盧瑟福而以他命名的。鑪是一種人工合成的放射性元素,不出現在自然界中,但可以在實驗室內產生。其最穩定的已知同位素為267Rf,半衰期約為1.3小時。 在元素週期表中,鑪位於d區塊,是第一個錒系後元素。鑪屬於第7週期、4族。化學實驗已證實,鑪是比同為4族的鉿較重的化學同系物。人們對鑪的化學特性瞭解不全。鑪與其他的4族元素相似,不過某些計算指出,由於相對論性效應,它可能會具有很不同的化學屬性。 位於前蘇聯和美國加州的實驗室在1960年代分別製造出少量的鑪。由於雙方發現鑪的先後次序不清,因此蘇聯和美國科學家們對其命名產生了爭議;直到1997年國際純粹與應用化學聯合會才將鑪作為該元素的正式名稱。.

同位素列表和鑪 · 鑪和𨧀 · 查看更多 »

鉭(Tantalum,舊譯作鐽)是一種化學元素,符號為Ta,原子序為73。其名稱「Tantalum」取自希臘神話中的坦塔洛斯。鉭是一種堅硬藍灰色的稀有過渡金屬,抗腐蝕能力極強。鉭屬於難熔金屬,常作為合金的次要成份。鉭的化學活性低,適宜代替鉑作實驗器材的材料。目前鉭的最主要應用為鉭電容,在手提電話、DVD播放機、電子遊戲機和電腦等電子器材中都有用到。鉭在自然中一定與化學性質相近的鈮一齊出現,一般在鉭鐵礦、鈮鐵礦和鈳鉭鐵礦中可以找到。.

同位素列表和钽 · 钽和𨧀 · 查看更多 »

钒(Vanadium),元素符号V,化学元素之一,原子序数为23。钒音译自英语Vanadium,其词根源于日耳曼神话中古日耳曼语的女神名字。这名字源于钒有许多色彩鲜艳的化合物。 钒為有韌性及延展性之堅硬銀灰过渡金属,在自然界僅以化合態存在,一般用於材料工程作为合金成分。.

同位素列表和钒 · 钒和𨧀 · 查看更多 »

鍆是一個人工合成元素,符號為Md(曾為Mv),原子序為101。鍆是錒系元素中具有放射性的超鈾金屬元素,通常的合成方式是以α衰變撞擊鑀元素。鍆(Mendelevium)以最先創建元素週期表的德米特里·伊萬諾維奇·門捷列夫命名。門捷列夫的週期表成為了分類所有化學元素的最基本的方式。名稱Mendelevium被國際純粹與應用化學聯合會(IUPAC)所承認,但最初提出的符號Mv則未被接受,IUPAC最終於1963年改用Md。.

同位素列表和钔 · 钔和𨧀 · 查看更多 »

鈮(IUPAC名:niobium,化學符号:Nb) 是原子序為41的化學元素,曾有舊稱鈳(Columbium,化學符号:Cb)原在美洲使用,1949年IUPAC決定採歐洲使用的名稱。鈮是一種質軟的灰色可延展過渡金屬,一般出現在和中。其命名來自希臘神話中的尼俄伯,即坦塔洛斯之女。 鈮的化學和物理性質與鉭元素相近,因此兩者很難區分開來。英國化學家查理斯·哈契特在1801年宣佈發現一種近似於鉭的新元素,並將它命名為「Columbium」(鈳)。1809年,英國化學家威廉·海德·沃拉斯頓錯誤地把鉭和鈳判定為同一個元素。德國化學家海因里希·羅澤在1846年得出結論,指鉭礦物中確實存在另一種元素,他將其命名為「Niobium」(鈮)。在1864至1865年進行的一系列研究最终确认,鈮和鈳實為同一元素,與鉭則是不同的元素。接下來的一個世紀內,兩種稱呼都被廣泛通用。1949年,鈮成為了這一元素的正式命名,但美國至今仍在冶金學文獻中使用舊名「鈳」。 鈮直到20世紀初才開始有商業應用。巴西是目前鈮和鐵鈮合金的最大產國。鈮一般被用於製作合金,最重要的應用在特殊鋼材,例如天然氣運輸管道材料。雖然這些合金的含鈮量不會超過0.1%,但加入少量的鈮即可達到強化鋼材的作用。含鈮的高溫合金具有高溫穩定性,對製造噴射引擎和火箭引擎非常有用。鈮是第II類超導體的合金成份。這些超導體也含有鈦和錫,被廣泛應用在核磁共振成像掃描儀作超導磁鐵。 鈮的毒性低,亦很容易用陽極氧化處理進行上色,所以被用於錢幣和首飾。鈮的其他應用範疇還包括焊接、核工業、電子和光學等。.

同位素列表和铌 · 铌和𨧀 · 查看更多 »

锎(Californium,--)是一種放射性金屬元素,符號為Cf,原子序為98。鉲屬於錒系元素,是第六種人工合成的超鈾元素。鉲是產量能以肉眼可見的元素中原子量第二高的(最高的是鑀),也是自然界能自行產生的元素中質量数最高的,所有比鉲更重的元素皆必須通過人工合成才能產生。伯克利加州大學於1950年以α粒子(氦-4離子)撞擊鋦,首次人工合成鉲元素,因此該元素是以美國加利福尼亞州及加州大學命名的。 鉲擁有三種晶體結構,分別存在於正常氣壓900 °C以下、正常氣壓900 °C以上與高壓下(48 GPa)。在室溫下,鉲金屬塊會在空氣中緩慢地失去光澤。鉲的化合物主要由能夠形成3個化學鍵的鉲(III)形成。目前已知的20個鉲的同位素中,鉲-251是最為穩定的,其半衰期為898年,而鉲-252是最常被使用的同位素,半衰期約為2.64年,該同位素主要在美國的橡樹嶺國家實驗室及俄羅斯的合成。由於大部分鉲同位素的半衰期都很短,所以地殼中不存在大量的鉲元素。地球大約在45億年前形成,而在地球中自然放射的中子不足以從較穩定的元素產生出大量的鉲。 鉲是少數具有實際用途的超鈾元素之一,利用某些鉲同位素是強中子射源的特性,鉲能夠用於啟動核反應爐,還可以使用在中子衍射技術和中對材料進行研究。另外,鉲可用来合成质量数更高的元素,例如以鈣-48離子撞擊鉲-249可合成第118號元素Og。但在處理鉲的時候,也因此必須考慮到放射性的問題。當鉲累積在動物的骨骼組織時,將破壞紅血球的形成,影响造血功能。.

同位素列表和锎 · 锎和𨧀 · 查看更多 »

锫(--;Berkelium)是一種放射性化學元素,符號為Bk,原子序為97,屬於錒系元素和超鈾元素。位於美國加州伯克利的勞倫斯伯克利國家實驗室在1949年12月發現錇元素,因此錇以伯克利(Berkeley)命名。錇是繼鎿、鈈、鋦和鎇後第五個被發現的超鈾元素。 最常見的錇同位素是錇-249,主要經高通量核反應爐產生。目前製造該同位素的有美國田納西州的橡樹嶺國家實驗室和俄羅斯季米特洛夫格勒的核反應器研究所。第二重要的同位素錇-247要用高能量α粒子向鋦-244進行撞擊而產生。 從1967年至今,在美國生產的錇元素僅僅超過1克。除在科學研究中用來合成更重的超鈾元素和超錒系元素外,錇沒有實際的用途。2009年,在進行250天的輻射後,橡樹嶺國家實驗室製成了22毫克的錇-249,並在其後的90天內對該樣本進行了純化處理。純化後的錇元素同年被送到俄羅斯聯合核研究所,以鈣-48離子向其撞擊150天後,合成了Ts(117號元素)。 錇是一種柔軟的銀白色放射性金屬。錇-249同位素輻射的是低能電子,所以相對安全。不過,其半衰期為330天,衰變後會產生鉲-249,而該同位素會釋放高能量的α粒子,十分危險。這種衰變的現象在研究錇元素及其化合物屬性時尤其重要,因為不斷生成的鉲不但會污染化學樣本,還會釋放輻射,破壞樣本的結構。.

同位素列表和锫 · 锫和𨧀 · 查看更多 »

锿(Einsteinium,--,舊譯作釾)是一種人工合成元素,符號為Es,原子序為99。鑀是第7個超鈾元素,屬於錒系元素。 鑀是在1952年第一次氫彈爆炸的殘餘物中發現的,並以物理學家阿爾伯特·愛因斯坦命名。其最常見的同位素為鑀-253(半衰期為20.47天),是通過鉲-253的衰變而人工製造的,每年在高能核反應爐中的產量約為1毫克。合成之後,鑀-253要從其他錒系元素及其衰變產物中分離出來,這是個複雜的過程。其他的鑀同位素則在各個實驗室中以較輕元素的離子撞擊錒系元素而合成,但產量少得多。鑀除了用于合成新的元素,主要用于发射X射线。鑀曾在1955年用於首次合成鍆元素,並一共合成了17顆鍆原子。 鑀是一種柔軟的銀白色金屬,具順磁性。其化學屬性符合典型的重錒系元素,容易形成+3氧化態,並特別在固體中也可以形成+2態。鑀-253的高放射性會使它明顯地發光,並會迅速破壞其晶體金屬結構,每克釋放大約1000瓦的熱量。由於鑀-253每天都損失3%的質量,並依次衰變為錇和鉲,因此對鑀的研究十分困難。鑀-252是存留時間最長的鑀同位素(半衰期為471.7天),可以用於研究鑀的物理特性,但生產鑀-252是極為困難的,每次的產量也極少。鑀是最後一種曾在宏觀尺度下以純元素形態被研究過的元素,所用的同位素是常見但半衰期短的鑀-253。和其他的人工合成超鈾元素一樣,鑀是極具放射性的,如果進食了會對健康造成損害。.

同位素列表和锿 · 锿和𨧀 · 查看更多 »

锘是一种人工获得的放射性元素(1957年),它的化学符号是No,它的原子序数是102,属于锕系元素之一。 锘的拼音名称是以瑞典化学家阿尔弗雷德·诺贝尔而命名。他亦是创建诺贝尔奖的人。 锘-261是最稳定的同位素,半衰期有170分钟。其次是锘-259,半衰期有58分钟。 锘-254的半衰期是55秒。 Category:锕系元素 Category:人工合成元素 7P 7P.

同位素列表和锘 · 锘和𨧀 · 查看更多 »

鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.

同位素列表和镅 · 镅和𨧀 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

同位素列表和氡 · 氡和𨧀 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

同位素列表和氮 · 氮和𨧀 · 查看更多 »

氖(舊譯作氝,訛作氞)是一种化学元素,它的化学符号是Ne,它的原子序数是10,是一种无色的稀有气体,把它放电时呈橙红色。氖最常用在霓红灯之中。空气中含有少量氖。.

同位素列表和氖 · 氖和𨧀 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

同位素列表和放射性 · 放射性和𨧀 · 查看更多 »

𨨏

𨨏(;)是原子序為107的化學元素,符號為Bh,以丹麥物理學家尼爾斯·玻爾命名。𨨏是一個人工合成元素(須在實驗室中合成,而不產生於自然界中),其最穩定的同位素270Bh的半衰期大約為61秒。 在元素週期表中,𨨏是一個d區塊錒系後元素,位於第7週期、7族。化學實驗證實𨨏符合7族中位於錸之下元素的特性。人們對𨨏的化學屬性並不完全瞭解,就目前所知,其特性與7族元素的趨勢相符。.

同位素列表和𨨏 · 𨧀和𨨏 · 查看更多 »

𨭎

𨭎(IUPAC名:Seaborgium)()是一種人工合成的化學元素,符號為Sg,原子序為106。 𨭎是個人工合成元素,其最穩定的同位素為271Sg,半衰期為1.9分鐘。新發現的同位素 269Sg可能有著更長的半衰期(約2.1分鐘),這是根據一次單個衰變的觀測得出的。有關𨭎的化學實驗確切地將它歸類於6族,作為鎢之下的同系物。.

同位素列表和𨭎 · 𨧀和𨭎 · 查看更多 »

5族元素

5族元素是元素周期表的第5族元素(ⅤB 族),位于4族元素和6族元素之间,包括的元素有:.

5族元素和同位素列表 · 5族元素和𨧀 · 查看更多 »

上面的列表回答下列问题

同位素列表和𨧀之间的比较

同位素列表有287个关系,而𨧀有49个。由于它们的共同之处22,杰卡德指数为6.55% = 22 / (287 + 49)。

参考

本文介绍同位素列表和𨧀之间的关系。要访问该信息提取每篇文章,请访问: