史瓦西度規和角动量
快捷方式: 差异,相似,杰卡德相似系数,参考。
史瓦西度規和角动量之间的区别
史瓦西度規 vs. 角动量
史瓦西度規(Schwarzschild metric),又稱史瓦西幾何、史瓦西解,是卡爾·史瓦西於1915年針對广义相对论的核心方程——愛因斯坦場方程式——关于球状物质分布的解。根據伯考夫定理(Birkhff`s theorem),史瓦西解可說是愛因斯坦方程最一般的真空解。這樣的解又可被稱作史瓦西黑洞,他所對應的幾何是一個是靜止不旋轉、不帶電荷之黑洞。在物理上他可以對應任何球對稱星球外部的的時空幾何。因此常常用於近似於不同旋轉緩慢(遠小於光速)的天體的重力場,例如恆星、行星等。 在史瓦西解中,只有一個刻劃該解的參數,可以看成是史瓦西黑洞的質量。因此某方面來說,一個史瓦西黑洞只能用他的質量來區別,兩質量相等的史瓦西黑洞在物理上是完全一樣的。史瓦西解有個很重要的超曲面叫做事件視界,在事件視界內發生的事件無法被事件視界外的觀測者觀測到。它並非任何物理上實際存在的介面,事實上,如果有一觀測者通過事件世界,他不會感受到任何異狀。但是一旦通過事件視界,觀測者將無法回到黑洞外部。 此外史瓦西解另一個重要的特徵是它包含了奇異點。在奇異點時空的曲率發散,古典的廣義相對論並不適用在奇異點上,故實如何在物理上詮釋奇異點並不明確。可能需要一個可以考慮量子效應的量子重力理論才能給出好的解釋。任何通過事件視界的類時(time-like)的觀測者都會碰到奇異點。. 在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.
之间史瓦西度規和角动量相似
史瓦西度規和角动量有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么史瓦西度規和角动量的共同点。
- 什么是史瓦西度規和角动量之间的相似性
史瓦西度規和角动量之间的比较
史瓦西度規有66个关系,而角动量有21个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (66 + 21)。
参考
本文介绍史瓦西度規和角动量之间的关系。要访问该信息提取每篇文章,请访问: