之间可对角化矩阵和实数相似
可对角化矩阵和实数有(在联盟百科)2共同点: 勒贝格测度,特征值和特征向量。
勒贝格测度
数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予一个体积的集合被称为勒贝格可测;勒贝格可测集A的体积或者说测度记作λ(A)。一个值为∞的勒贝格测度是可能的,但是即使如此,在假设选择公理成立时,Rn的所有子集也不都是勒贝格可测的。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。.
勒贝格测度和可对角化矩阵 · 勒贝格测度和实数 ·
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
上面的列表回答下列问题
- 什么可对角化矩阵和实数的共同点。
- 什么是可对角化矩阵和实数之间的相似性
可对角化矩阵和实数之间的比较
可对角化矩阵有25个关系,而实数有96个。由于它们的共同之处2,杰卡德指数为1.65% = 2 / (25 + 96)。
参考
本文介绍可对角化矩阵和实数之间的关系。要访问该信息提取每篇文章,请访问: