我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

可定向性和超曲面

快捷方式: 差异相似杰卡德相似系数参考

可定向性和超曲面之间的区别

可定向性 vs. 超曲面

欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t). 超曲面(hypersurface)是几何中超平面概念的一种推广。假设存在一个n维流形M,则M的任一(n-1)维子流形即是一个超曲面。或者可以说,超曲面的餘維數为1。 在代数几何中,超曲面是指n维射影空间上的一个(n-1)维的代数集。它可由方程F.

之间可定向性和超曲面相似

可定向性和超曲面有1共同点(的联盟百科): 流形

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

可定向性和流形 · 流形和超曲面 · 查看更多 »

上面的列表回答下列问题

可定向性和超曲面之间的比较

可定向性有41个关系,而超曲面有10个。由于它们的共同之处1,杰卡德指数为1.96% = 1 / (41 + 10)。

参考

本文介绍可定向性和超曲面之间的关系。要访问该信息提取每篇文章,请访问: