我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

可作图多边形和有理数

快捷方式: 差异相似杰卡德相似系数参考

可作图多边形和有理数之间的区别

可作图多边形 vs. 有理数

在数学中,可作图多边形是可以用尺规作图的方式作出的正多边形。例如,正五边形可以只使用圆规和直尺作出,而正七边形却不可以。. 数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

之间可作图多边形和有理数相似

可作图多边形和有理数有(在联盟百科)2共同点: 几何原本素数

几何原本

《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.

几何原本和可作图多边形 · 几何原本和有理数 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

可作图多边形和素数 · 有理数和素数 · 查看更多 »

上面的列表回答下列问题

可作图多边形和有理数之间的比较

可作图多边形有32个关系,而有理数有45个。由于它们的共同之处2,杰卡德指数为2.60% = 2 / (32 + 45)。

参考

本文介绍可作图多边形和有理数之间的关系。要访问该信息提取每篇文章,请访问: