之间古菌和生物化学相似
古菌和生物化学有(在联盟百科)26共同点: 基因,乳糖,代謝途徑,代谢,分子生物学,碳,糖类,細胞週期,纤维素,结构生物学,细胞,细胞膜,细胞核,翻译 (遗传学),生物,转录,脱氧核糖核酸,脂類,醚,酶,RNA干扰,核酸,核苷酸,氢,淀粉酶,有机化合物。
基因
基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.
乳糖
乳糖(Lactose)是一种雙醣,由一分子β-D-半乳糖和一分子β-D-葡萄糖在β-1,4-位形成糖苷键相连。分子式C12H22O11(),摩尔质量342.3克。有两种端基异构体:α-乳糖和β-乳糖,在水溶液中可互相转化。α-乳糖很容易结合一分子結晶水。该化合物是白色,水溶性,非吸湿性固体,具有温和的甜味。它被用于食品工业。 甜度是蔗糖的约五分之一,乳中2-8%的固体成分为乳糖。幼小的哺乳动物肠道能分泌乳糖酶分解乳糖为单糖。成年动物,包括除高加索人种外的多数人类体内乳糖酶的活性大大降低。故饮用乳类可产生腹泻、腹胀等症状,称为乳糖不耐症。 成年動物若長期持續飲用乳品(初期以少量多次慢飲為宜),也可刺激腸道內乳糖酶的活性並增加一定數量,雖活性和數量不如幼兒時期,但仍能有效幫助分解乳糖。.
代謝途徑
代謝途徑(metabolic pathway)在生物化學中,是一連串在細胞內發生的化學反應,並由酶所催化,形成使用或儲存的代謝物,或引發另一個代謝途徑(稱為「流量控制反應」)。多種途徑都是精細的,並涉及原來物質逐步修飾成所需的化學結構的化合物。在分子生物学中常被称作代谢通路,通常是指某个或某几个基因表达所涉及的全部酶或信号分子。在某一特定时间点的细胞内所有表达的基因的集合称为基因表达谱通常用RNA-seq来测定。 細胞內不同代謝途徑組成了代謝網絡。底物是否進入代謝途徑,要視乎細胞的需要,即合成代謝物及分解代謝物濃度的獨特組合(流量控制反應的動力)。代謝途徑包括主要的代學反應(一般都是需要酶的)令生物保持牠的內環境穩態。.
代谢
代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.
分子生物学
分子生物学(Molecular biology)是对生物在分子層次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。.
分子生物学和古菌 · 分子生物学和生物化学 ·
碳
碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.
糖类
醣類(Carbohydrate)又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氫與氧三種元素所組成,廣布于自然界。醣類的另一個名稱为“碳水化合物”,其由來是根据生物化学家先前發現一类物质可写成经验分子式:Cn(H2O)n,其氢与氧元素的比例始终为2:1,故以为醣類是碳和水的化合物;但后来的发现证明了许多糖类并不符合上述分子式,如:鼠李糖(C6H12O5);而有些物質符合上述分子式却不是糖类,如甲醛(CH2O)等。醣類為人體之重要的營養素,主要分成三大類:單醣、雙醣和多醣。在一般情況下,單醣和雙醣是較小的(低分子量)的碳水化合物,通常稱為--。例如,葡萄糖是單醣,蔗糖和乳糖是雙醣(見圖示)。 糖类在生物体上扮演著众多的角色,像多醣可作为儲存養分的物質,如澱粉和糖原;或作为動物外骨骼和植物細胞的細胞壁,如:甲殼素和纖維素;另如五碳醛醣的核糖是構成各種輔因子的不可或缺失之物質,如ATP、FAD和NAD)也是一些遺傳物質分子的骨幹(如 DNA和 RNA)。醣類的眾多衍生物同時也與免疫系統、受精、預防疾病、血液凝固和生長等有極大的關聯。 在食品科學和其他非正式的場合中,碳水化合物通常是指:富有澱粉(如五穀類、麵包或麵食)或簡單的醣類的食物(如食糖)。.
細胞週期
細胞週期(cell cycle),是指能持续分裂的真核细胞从一次有丝分裂结束后生长,再到下一次分裂结束的循环过程。細胞週期的长短反映了细胞所处状态,这是一个细胞物质积累与细胞分裂的循环过程。癌变的细胞以及特定阶段的胚胎细胞常常有异常的分裂週期。.
纤维素
纤维素(cellulose)是一类有機化合物,其化學通式为,是由幾百至幾千個β(1→4)連接的D-葡萄糖單元的線性鏈(糖苷键)組成的多醣。纖維素是綠色植物的,許多形式的藻類的和卵菌的原代細胞壁的重要結構組分;一些種類的細菌分泌它以形成生物膜。纖維素是地球上最豐富的有機聚合物,是自然界中分布最广、含量最多的一种多醣,是组成植物细胞壁的主要成分。棉花、亚麻、苧麻和黄麻部含有大量优质的纤维素。棉花纤维中的纤维素含量是90%,木头中纤维素含量是40%-50%,干燥的麻中纤维素含量是57%。 天然纤维素为无味的白色丝状物。纤维素不溶于水、稀酸、稀碱和有机溶剂,但在加热的条件下会被酸水解,主要的生物学功能是构成植物的支持组织。.
结构生物学
结构生物学是一门以分子生物学生物化学和生物物理学的分支,关心的生物大分子(如蛋白质分子和核酸分子)的分子三维结构(Tertiary structure)(包括构架和形态),它们是如何获得它们的结构,并研究改变它们的结构与影响其功能的关系的学科。由于结构生物学能够解释生物大分子的构象和相互作用的方式,而所有的生命活动都是通过各种生物大分子的相互作用来实现;因此,对于生物学家们来说,这是一个非常有吸引力的领域。.
古菌和结构生物学 · 生物化学和结构生物学 ·
细胞
细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.
细胞膜
细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.
细胞核
细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.
翻译 (遗传学)
#重定向 翻譯 (生物學).
生物
生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.
转录
转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.
脱氧核糖核酸
--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.
古菌和脱氧核糖核酸 · 生物化学和脱氧核糖核酸 ·
脂類
脂類(英語:Lipid),又稱脂質,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蠟、类固醇、脂溶性維生素(如維生素A,D,E和K)、、、磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導等。如今,脂类已经被用于美容和食品工业,以及纳米技术。 脂質可以廣義定義為疏水性或雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡、脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基與異戊二烯。由此,脂質可以概分為八類:脂肪酸、甘油酯、甘油磷脂、鞘脂(神經脂質)、、聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)。 脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、二酸甘油酯、磷脂等,也包括其他含有固醇的代謝產物,像是膽固醇。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。 有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。.
醚
醚(漢語拼音:mí,Ether)是具有醚官能团的一类有机化合物。醚官能团是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。 醚类中最典型的化合物属:乙醚,它常用于有机溶剂与医用麻醉剂。由于其在化学中的常用性(乙醚是最常用的醚类提取溶剂),我们还有时将乙醚直接简称为“醚”。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。.
酶
酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.
RNA干扰
RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的轉译或转录来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。与其它基因沉默现象不同的是,在植物和線蟲中,RNAi具有传递性,可在细胞之间传播,此現象被稱作系統性RNA干擾(systemic RNAi)。在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚至於可用喂食細菌給線蟲的方式讓線蟲得以產生RNA干擾現象。RNAi现象在生物中普遍存在。2006年,安德鲁·法厄(Andrew Z. Fire)与克雷格·梅洛(Craig C. Mello)由于在秀丽隐杆线虫的RNAi机制研究中的贡献而共同获得诺贝尔生理及医学奖。 RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子層次上被证实是同一种现象。.
RNA干扰和古菌 · RNA干扰和生物化学 ·
核酸
核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.
核苷酸
核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.
氢
氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.
淀粉酶
淀粉酶(拼音:diàn-fěn méi;注音:ㄉㄧㄢˋ ㄈㄣˇ ㄇㄟˊ;法语, 德语, 英文:Amylase)是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。 α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。 β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和 α-1,4-葡聚糖-麦芽糖水解酶(α-1,4-glucan maltohydrolase)的名称等而被使用。.
有机化合物
有机化合物(Organische Verbindung;英語:organic compound、organic chemical),简称有机物,是含碳化合物,但是碳氧化物(如一氧化碳、二氧化碳)、碳酸、碳酸鹽、 碳酸氢盐、氰化物、硫氰化物、氰酸鹽、金屬碳化物(如電石)等除外。有机化合物有时也可被定义为碳氫化合物及其衍生物的總稱。有机物是生命產生的物質基礎,例如生命的起源——胺基酸即為一有機化合物。.
古菌和有机化合物 · 有机化合物和生物化学 ·
上面的列表回答下列问题
- 什么古菌和生物化学的共同点。
- 什么是古菌和生物化学之间的相似性
古菌和生物化学之间的比较
古菌有201个关系,而生物化学有206个。由于它们的共同之处26,杰卡德指数为6.39% = 26 / (201 + 206)。
参考
本文介绍古菌和生物化学之间的关系。要访问该信息提取每篇文章,请访问: