之间变分法和算子相似
变分法和算子有(在联盟百科)6共同点: 导数,微积分学,量子力学,泛函,泛函分析,数学。
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
泛函
传统上,泛函(functional)通常是指一種定義域為函數,而值域为实数的「函數」。换句话说,就是从函数组成的一个向量空间到实数的一个映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。 在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。 设S\ 是由一些函数構成的集合。所谓S\ 上的泛函就是S\ 上的一个实值函数。S\ 称为该泛函的容许函数集。 函数的变换某种程度上是更一般的概念,参见算子。.
泛函分析
泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么变分法和算子的共同点。
- 什么是变分法和算子之间的相似性
变分法和算子之间的比较
变分法有48个关系,而算子有63个。由于它们的共同之处6,杰卡德指数为5.41% = 6 / (48 + 63)。
参考
本文介绍变分法和算子之间的关系。要访问该信息提取每篇文章,请访问: