我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

双曲几何和猜想

快捷方式: 差异相似杰卡德相似系数参考

双曲几何和猜想之间的区别

双曲几何 vs. 猜想

双曲几何又名罗氏几何(罗巴切夫斯基几何),是非欧几里德几何的一种特例。與欧几里德几何的差別在於第五條公理(公設)-平行公設。在欧几里德几何中,若平面上有一條直線R和線外的一點P,則存在唯一的一條線滿足通過P點且不與R相交(即R的平行線)。但在雙曲幾何中,至少可以找到兩條相異的直線,且都通過P點,並不與R相交,因此它違反了平行公設。然而,取代欧几里德几何中的平行公設的雙曲幾何本身並無矛盾之處,仍可以推得一系列屬於它的定理,這也說明了平行公設獨立於前四條公設,換句話說,無法由前四條公設推得平行公設。 到目前為止,數學家對雙曲幾何中平行線的定義尚未有共識,不同的作者會給予不同的定義。这里定義兩條逐漸靠近的線為漸進線,它們互相漸進;兩條有共同垂直線的線為超平行線,它們互相超平行,並且兩條線為平行線代表它們互相漸進或互相超平行。雙曲幾何還有一項性質,就是三角形的內角和小於一個平角(180°)。在極端的情況,三角形的三邊長趨近於無限,而三內角趨近於0°,此時該三角形稱作理想三角形。 双曲几何专门研究当平面变成鞍马型之后,平面几何到底还有几多可以适用,以及会有甚麼特別的现象產生。在双曲几何的环境裡,平面的曲率是負数。 通過兩個點可形成一個直線. 數學中的猜想是在根據不完全資訊下的結論及命题,是不知其真假的數學敘述,它可能為真,暫時未被證明或反證 。某些猜想會稱為「假設」,尤其是當它是針對某些問題提出的答案。 像黎曼猜想(目前仍然是猜想)或是費馬最後定理(以往是猜想,一直到1995年才得證)都對數學歷史帶來許多的進展,而且為了證明這些猜想,也發展了新的數學領域。 當猜想被證明後,它便會成為定理。猜想只要未成為定理,數學家都要小心在邏輯結構之中使用這些猜想。猜想主要因為類比推理和偶然發現的巧合而出現。數學家通常會使用不完全歸納法,來測試自己的猜想。例如費馬曾經根據首四個費馬數是素數,便猜想所有費馬數都是素數(此猜想已被推翻)。.

之间双曲几何和猜想相似

双曲几何和猜想有1共同点(的联盟百科): 平行公設

平行公設

平行公設(Parallel postulate),也稱為歐幾里得第五公設,因是《幾何原本》五條公設的第五條而得名。這是歐幾里得幾何一條與別不同的公理,比前四條複雜。公設是說: 假定所有歐幾里得公設(當中包括平行公設)都成立的幾何称为歐幾里得幾何。假定平行公設不成立的稱為非歐幾里得幾何。不依賴於平行公設的幾何,也就是只假設前四條公設的,稱為仿射幾何 这只是一个与平行线的性质有关的公设。欧几里得已在《几何原本》第I卷定义第23条中定义过平行线了。。 歐幾里得幾何的有些性質與平行公設等價,也就是假設平行公設成立,可推導出這些性質,反过来假設這些性質的一項為公理,也可以推導出平行公設。其中最重要的一項,也是最常作為公理代替平行公設的,要算是蘇格蘭數學家约翰·普莱费尔提出的普莱费尔公理: 这里有个问题要提出来,即在证明第五公设时,平面是不加定义,如果平面作如下定义:满足第五公设的面定义为平面。这实际上可用公理法对平面作定义。如果有这定义,第五公设是自明的。这才符合直观。.

双曲几何和平行公設 · 平行公設和猜想 · 查看更多 »

上面的列表回答下列问题

双曲几何和猜想之间的比较

双曲几何有19个关系,而猜想有20个。由于它们的共同之处1,杰卡德指数为2.56% = 1 / (19 + 20)。

参考

本文介绍双曲几何和猜想之间的关系。要访问该信息提取每篇文章,请访问: