徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

厭氧生物

指数 厭氧生物

厭氧生物,或稱厭氣生物,是指一種不需要氧氣生長的生物。牠們大致上可以分為三種,即專性厭氧生物、兼性厭氧生物及耐氧厭氧生物 。人體內的厭氧生物多存在於消化系統中,有些種類的厭氧細菌會產生毒素。 厭氧生物可以是單細胞的(例如原生生物和細菌),但也可以是多細胞的(例如一些多毛綱生物)。.

41 关系: ATP原生生物厭氧生物古菌发酵好氧生物專性厭氧菌專性需氧微生物丁酸三磷酸腺苷丙酸乳酸乙醇人類二磷酸腺苷廢物管理單醣呼吸作用啤酒酵母兼性厭氧菌环境磷酸鹽線粒體细菌细胞真菌生命生物生物氣體產甲烷作用發酵超氧化物超氧化物歧化酶过氧化氢酶肉毒桿菌毒素酵母植物毒素氧气消化系统

ATP

ATP是一个缩略语,在不同的领域指不同的事物,它可以代表:.

新!!: 厭氧生物和ATP · 查看更多 »

原生生物

原生生物(学名:Protist,)指真核生物域中,不属于植物、动物和真菌的那些一般个体微小、多数为单细胞的、有细胞核和原生质膜包围的细胞器的真核生物。原生生物谱系是一个并系群而非单系群,因为它们并不是一个自然类群,各个大类群之间差异很大且不知道他们的派生关系,只是为了研究方便,将这些细胞结构、繁殖和生活史等方面表现出很大的差异的生物暂时归为一类。 原生生物主要生活在包含液态水的环境中。藻类等原生生物会进行光合作用,同时他们也是生态系统中的初级生产者,在海洋中这类生物属于浮游生物。其他的原生生物会导致一系列的较为严重的人类疾病,这类生物有比如动质体和顶复门动物等,导致的疾病包括部分種類的阿米巴原蟲、疟疾和非洲锥虫病等。 单细胞原生生物虽没有细胞分化,为了执行各种生物学功能,结构更为复杂。结构复杂、变异多样的始祖原生生物发展成为现代原生生物的祖先以及多细胞真核生物——植物、真菌和动物。.

新!!: 厭氧生物和原生生物 · 查看更多 »

厭氧生物

厭氧生物,或稱厭氣生物,是指一種不需要氧氣生長的生物。牠們大致上可以分為三種,即專性厭氧生物、兼性厭氧生物及耐氧厭氧生物 。人體內的厭氧生物多存在於消化系統中,有些種類的厭氧細菌會產生毒素。 厭氧生物可以是單細胞的(例如原生生物和細菌),但也可以是多細胞的(例如一些多毛綱生物)。.

新!!: 厭氧生物和厭氧生物 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: 厭氧生物和古菌 · 查看更多 »

发酵

发酵作用(fermentation)有时也寫作醱酵,其定义由使用场合的不同而不同。通常所说的发酵,多是指生物体对于有机物的某种分解过程。发酵是人类较早接触的一种生物化学反应,如今在食品工业、生物和化学工业中均有广泛应用。其也是生物工程的基本过程,即发酵工程。对于其机理以及过程控制的研究,还在继续。.

新!!: 厭氧生物和发酵 · 查看更多 »

好氧生物

好氧生物(Aerobic organism,或 aerobe),又譯為好氣生物、耗氧生物、需氧生物,是能在有氧的環境中生存及生長的生物。好氧生物利用氧的化學反應來分解醣及脂肪,以獲得能量。幾乎所有的動物,大多數的真菌,都屬於好氧生物。能在無氧環境中生存的生物,稱為厭氧生物。根據對於氧氣的需求,好氧生物又分為專性需氧生物、兼性好氧生物及耐微氧生物。 好氧生物主要进行有氧气参与的有氧呼吸。.

新!!: 厭氧生物和好氧生物 · 查看更多 »

專性厭氧菌

專性厭氧菌(obligate anaerobes)是一類僅能進行無氧呼吸,且無法在正常大氣(氧含量21%)等富氧環境下存活的微生物。這類生物對氧氣的耐受力不同,部分專性厭氧菌可以在氧含量達8%的環境下存活,但有些專性厭氧菌則僅能在氧含量低於0.5%的環境下存活。值得注意的是,微需氧微生物雖然與專性厭氧菌一樣不能在正常大氣中存活(前者的生存環境中氧含量一般爲2%-10%),但它的呼吸方式是有氧呼吸,而不是專性厭氧菌的無氧呼吸或發酵。.

新!!: 厭氧生物和專性厭氧菌 · 查看更多 »

專性需氧微生物

專性需氧微生物(obligate aerobe)是一類在有氧條件下才能存活的微生物。這類生物通過有氧呼吸將糖類或脂肪轉化爲其生活所需的能量,在其呼吸中,氧被用作電子傳輸鏈的末端電子受體。比起無氧呼吸和發酵,有氧呼吸在消耗同樣的葡萄糖的前提下能產生更多的ATP(三磷酸腺苷)。不過,專性需氧微生物常常遭受高水平的氧化應激。 結核分枝桿菌和星狀諾卡氏菌均爲專性需氧微生物。除酵母菌外,大多數的真菌都是是專性需氧微生物。另外,幾乎所有的藻類都是專性需氧微生物。.

新!!: 厭氧生物和專性需氧微生物 · 查看更多 »

丁酸

丁酸,又稱酪酸,是化学式为CH3CH2CH2-COOH的羧酸和短链饱和脂肪酸,存在于腐臭的黄油、帕马森干酪、呕吐物和腋臭中。丁酸带有难闻的气味,味先辣后甜,与乙醚类似。10ppb浓度的丁酸即可被狗嗅出,人则大于10ppm。 丁酸是脂肪酸,在动物脂肪和植物油中以丁酸酯形式存在。其甘油酯占黄油的3~4%,当黄油腐烂后,含有难闻气味的丁酸即通过水解释放出来。它是短链脂肪酸的主要一员。丁酸为弱酸,酸度与乙酸(pKa.

新!!: 厭氧生物和丁酸 · 查看更多 »

三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

新!!: 厭氧生物和三磷酸腺苷 · 查看更多 »

丙酸

丙酸(propanoic acid),又稱初油酸,是三个碳的羧酸和短链饱和脂肪酸,化学式为CH3CH2COOH。纯的丙酸是无色、腐蚀性的液体,带有刺激性气味。.

新!!: 厭氧生物和丙酸 · 查看更多 »

乳酸

乳酸(IUPAC學名:2-羥基丙酸)是一种化合物,它在多种生物化学过程中起作用。它是一种羧酸,分子式是C3H6O3。它是一个含有羟基的羧酸,因此是一个α-羟酸(AHA)。在水溶液中它的羧基释放出一个质子,而产生乳酸根离子CH3CHOHCOO−。 乳酸有手性,有两个旋光异构体。一个被称为L-(+)-乳酸或(S)-乳酸,另一个被称为D-(-)-乳酸或(R)-乳酸。L-(+)-是在生物学上重要的异构体。.

新!!: 厭氧生物和乳酸 · 查看更多 »

乙醇

乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.

新!!: 厭氧生物和乙醇 · 查看更多 »

人類

#重定向 人.

新!!: 厭氧生物和人類 · 查看更多 »

二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

新!!: 厭氧生物和二磷酸腺苷 · 查看更多 »

廢物管理

#重定向 污染物排放控制技术.

新!!: 厭氧生物和廢物管理 · 查看更多 »

單醣

單醣(monosaccharides (源自希臘語 monos: single, sacchar: sugar), 亦稱:simple sugars)是碳水化合物的一種,其結構在眾多醣分子中是最簡單的。味道甜美,能溶於水和會結晶。 單醣以糖分子內含有碳原子的數量來歸類。通常有三至七個碳原子,例子有:.

新!!: 厭氧生物和單醣 · 查看更多 »

呼吸作用

呼吸作用,又称為细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解並转化能量的化學过程,也稱為釋放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核細胞中,粒線體是與呼吸作用最有關聯的胞器,呼吸作用的幾個關鍵性步驟都在其中進行。 呼吸作用是一種酶促氧化反应。雖名為氧化反應,不論有否氧气参与,都可称作呼吸作用(這是因為在化學上,有電子轉移的反應過程,皆可稱為氧化)。有氧气参与時的呼吸作用,稱之為有氧呼吸;没氧气参与的反應,則称为无氧呼吸。 呼吸作用的目的,是透過釋放食物裡之能量,以製造三磷酸腺苷,即細胞最主要的直接能量供應者。呼吸作用的氢與氧的燃燒,但兩者間最大分別是:呼吸作用透過一連串的反應步驟,一般的一次性釋放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂質的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透過數個步驟,将能量转移到还原性氢(化合价为0的氢)中。最後經過一連串的電子傳遞鏈,氢被氧化生成水;原本貯存在其中的能量,則转移到ATP分子上,供生命活动使用。.

新!!: 厭氧生物和呼吸作用 · 查看更多 »

啤酒酵母

#重定向 釀酒酵母.

新!!: 厭氧生物和啤酒酵母 · 查看更多 »

兼性厭氧菌

兼性厌氧菌是一類既可以進行有氧呼吸,也能夠進行無氧呼吸或發酵的微生物。在氧氣充足時,它們會通過有氧呼吸來產生ATP(三磷酸腺苷),但當氧氣缺乏時,它們的呼吸方式就會變為無氧呼吸 。與其不同,專性需氧微生物在無氧環境下無法產生ATP;專性厭氧微生物則因為無過氧化氫酶等物質而會在有氧環境下死亡。 常見的兼性厭氧菌包括葡萄球菌屬、鏈球菌屬、大腸桿菌、 李斯特菌奧奈達湖希瓦氏菌、弧菌屬等。一些真核生物,比如像酵母菌這樣的真菌亦屬兼性厭氧菌之列。此外,沙蠶等部分水生無脊椎動物的呼吸方式亦與兼性厭氧菌相同。.

新!!: 厭氧生物和兼性厭氧菌 · 查看更多 »

环境

环境是指周围所在的条件,对不同的对象和科学学科来说,环境的内容也不同。 环境可以指:.

新!!: 厭氧生物和环境 · 查看更多 »

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

新!!: 厭氧生物和磷酸鹽 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 厭氧生物和線粒體 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 厭氧生物和细菌 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 厭氧生物和细胞 · 查看更多 »

真菌

真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.

新!!: 厭氧生物和真菌 · 查看更多 »

生命

生命泛指一类具有稳定的物质和能量代谢现象并且能回应刺激、能进行自我复制(繁殖)的半开放物质系统。簡單來說,也就是具有生命機制的物体The American Heritage Dictionary of the English Language, 4th edition, published by Houghton Mifflin Company, via.

新!!: 厭氧生物和生命 · 查看更多 »

生物

生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

新!!: 厭氧生物和生物 · 查看更多 »

生物氣體

生物氣體(Biogas,亦稱生化氣體或生質氣體),泛指包括糞肥、污水、都市固體廢物及其他生物可降解的有機物質,在缺氧的環境下,經发酵或者無氧消化過程所產生的氣體,這些氣體主要包含甲烷及二氧化碳,視環境而定又被稱為沼氣、生物沼氣或。.

新!!: 厭氧生物和生物氣體 · 查看更多 »

產甲烷作用

烷作用,又稱甲烷生成,指合成甲烷是微生物代謝的重要的和广泛的形式。可以生成甲烷的微生物稱作。這些微生物都屬於原核生物中的古菌域,这是在系统发生学上与真核生物和细菌都不同的一组独特的微生物,尽管它们是和厭氧细菌有靠近的关联。在很多環境中,這是生物质降解的最終步驟。.

新!!: 厭氧生物和產甲烷作用 · 查看更多 »

發酵

#重定向 发酵.

新!!: 厭氧生物和發酵 · 查看更多 »

超氧化物

超氧化物(Superoxide)是含有超氧离子(超氧根离子,O2−)的一类化合物,是氧气分子的单电子还原产物,广泛存在于自然界中。超氧离子是一个自由基,一个氧原子带有一个未成对电子,与氧气分子一样呈顺磁性。.

新!!: 厭氧生物和超氧化物 · 查看更多 »

超氧化物歧化酶

超氧化物歧化酶(superoxide dismutase,缩写SOD)是一种能够催化超氧化物通过歧化反应转化为氧气和过氧化氢的酶。它广泛存在于各类动物、植物、微生物中,是一种重要的抗氧化剂,保护暴露于氧气中的细胞。.

新!!: 厭氧生物和超氧化物歧化酶 · 查看更多 »

过氧化氢酶

过氧化氢酶是一种广泛存在于各类生物体中的酶,它是一类抗氧化剂,其作用是催化过氧化氢转化为水和氧气的反应。过氧化氢酶也是具有最高转换数(与底物反应速率)的酶之一;在酶達飽和的狀態下,一个过氧化氢酶分子每秒能将四千萬个过氧化氢分子转化为水和氧气。 过氧化氢酶是一个同源四聚体,每一个亚基含有超过500个氨基酸残基;并且每个亚基的活性位点都含有一个卟啉血红素基团,用于催化过氧化氢的反应。过氧化氢酶的最适pH接近7,最适温度则因物种而异。.

新!!: 厭氧生物和过氧化氢酶 · 查看更多 »

肉毒桿菌毒素

肉毒桿菌毒素(英文:BTX, Botulinum Toxin)也被称为肉毒毒素或肉毒杆菌素,是由肉毒杆菌在厭氧條件下生長過程中所產生的一種嗜神經性外毒素。肉毒毒素共有A、B、Cα、Cβ、D、E、F、G八種類型,其中A型、B型对人类有毒性,大剂量可致死,但低剂量局部使用可消除肌肉痉挛,除去皱纹,在医疗和美容行业有广泛应用。其他6种类型对别的动物有毒性。.

新!!: 厭氧生物和肉毒桿菌毒素 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 厭氧生物和酶 · 查看更多 »

酵母

酵母(拼音:中國大陆:jiàomǔ、台灣:xiàomǔ;台語:kànn-bó;注音:中國大陆:ㄐㄧㄠˋ ㄇㄨˇ、台灣:ㄒㄧㄠˋ ㄇㄨˇ;德文: Hefen;英文:Yeast)是非分类学术语,泛指能发酵糖類的各种单细胞真菌,不同的酵母菌在进化和分类地位上有异源性。酵母菌种类很多,已知的约有56属500多种。一些酵母菌能夠通過出芽的方式進行無性生殖,也可以通過形成孢子的形式進行有性生殖。酵母經常被用於酒精釀造或者麵包烘培行業。目前已知有1500多種酵母,大部分被分類到子囊菌門。酵母菌屬兼性厭氧菌。.

新!!: 厭氧生物和酵母 · 查看更多 »

植物

植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.

新!!: 厭氧生物和植物 · 查看更多 »

毒素

本文所指的毒素(英語:Toxin),是指生物體所生產出來的毒物(poison),這個術語最早是由有機化學家路德維希(Ludwig Brieger)所提出。這些物質通常是一些會干擾生物體中其他大分子作用的蛋白質,例如蓖麻毒蛋白。由生物體産生的、極少量即可引起動物中毒的物貭。毒素在其嚴重程度差異很大,從一般輕微的急性(如蜂蜇)或是幾乎立即致命的(如肉毒毒素)。 據紅十字國際委員會的審查生物武器公約,“生物毒素是有毒的產品,不像生物製劑,它們是沒有生命的,而不是複製自己的能力。”和“自公約簽署後,不斷有各方面的生物製劑或毒素的定義各方沒有爭議……”.

新!!: 厭氧生物和毒素 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 厭氧生物和氧气 · 查看更多 »

消化系统

消化系统(digestive system)是多細胞生物用以進食、消化食物、獲取能量和營養、排遺剩餘废物的一组器官,其主要功能為攝食、消化、吸收、同化和排遺。其中有關排遺的部分,也可歸類到的一部分。.

新!!: 厭氧生物和消化系统 · 查看更多 »

重定向到这里:

厭氣生物厭氧性生物厭氧菌厌氧性生物厌氧细菌厌氧生物耐氧厭氧生物

传出传入
嘿!我们在Facebook上吧! »