我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

原子核物理学和核磁共振成像

快捷方式: 差异相似杰卡德相似系数参考

原子核物理学和核磁共振成像之间的区别

原子核物理学 vs. 核磁共振成像

原子核物理学(简称核物理学,核物理或核子物理)是研究原子核成分和相互作用的物理学领域。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构并带动相应的核子技术进展。原子核物理学最常见的和有名的应用是核能发电的和核武器的技术,但研究还提供了在许多领域的应用,包括核医学和核磁共振成像,材料工程的离子注入,以及地质学和考古学中的放射性碳定年法。 粒子物理学领域是从原子核物理学演变出来的,并且通常被讲授与原子核物理学密切相关。. 核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又稱自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),臺湾又称磁振造影,香港又稱磁力共振成像,是利用核磁共振(nuclear magnetic resonance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 從核磁共振現象發現到MRI技術成熟這幾十年期間,有关核磁共振的研究领域曾在三个领域(物理學、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。.

之间原子核物理学和核磁共振成像相似

原子核物理学和核磁共振成像有(在联盟百科)4共同点: 原子核物理学考古学核磁共振

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

原子核和原子核物理学 · 原子核和核磁共振成像 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

原子核物理学和物理学 · 核磁共振成像和物理学 · 查看更多 »

考古学

考古學(archaeology或archeology,源自古希臘文:ἀρχαιολογία, archaiologia ;ἀρχαῖος,arkhaīos,「古代」;以及-λογία, -logiā,「學問」),對於過去人類社會的研究,主要透過重建與分析古代人們的物質文化與環境資料,包括器物、建築、與。由於考古學運用許多不同的研究程序,它可被認定為一門科學與一門人文學,Renfrew and Bahn (2004:13)而且在美國,它是人類學的一個分支,Cultural Anthropology The Human Challenge (2005)在歐洲則是一門獨立學科。 考古學研究人類歷史,從距今250萬年前東非最早的石器的發展,直到近代。這個學科是最重要的史前史研究學科,在史前時代沒有文字資料可供歷史學家研究,而且這個時代佔了人類整體歷史的99%以上,從舊石器時代直到書寫文字出現之前。考古學具有各種不同的目標,範圍從研究人類演化到文化演化與瞭解文化史。 考古學包括、以及最後對所收集資料的分析,以便更瞭解人類的過去。就宏觀的視野來看,考古學仰賴跨學科分析,學科上的協助來自人類學、歷史學、遺傳學、演化生物學、生物科技、藝術史、古典學、民族學、地理學、Aldenderfer and Maschner (1996) 地質學、Gladfelter (1977)Watters (1992)Watters (2000) 語言學、物理學、資訊科學、化學、統計學、古生態學、古動物學、古生物學、與古植物學。 考古學在19世紀由歐洲的發展出來,從那時開始就成為遍佈世界的學科。從一開始,各種特別型態的考古學就已發展,包括與考古天文學,以及多樣的科學技術以輔助考古學調查。然而今日考古學家面對許多問題,包括面對、盜掘掠奪器物、與反對人類遺留的發掘。.

原子核物理学和考古学 · 核磁共振成像和考古学 · 查看更多 »

核磁共振

核磁共振(NMR,Nuclear Magnetic Resonance)是基於原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置於外加強大的磁場下,現代的儀器通常採用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新排列,大多數核自旋會處於低能態。我們額外施加電磁場來干涉低能態的核自旋轉向高能態,再回到平衡態便會釋放出射頻,這就是NMR訊號。利用這樣的過程,可以進行分子科學的研究,如分子結構、動態等。.

原子核物理学和核磁共振 · 核磁共振和核磁共振成像 · 查看更多 »

上面的列表回答下列问题

原子核物理学和核磁共振成像之间的比较

原子核物理学有32个关系,而核磁共振成像有94个。由于它们的共同之处4,杰卡德指数为3.17% = 4 / (32 + 94)。

参考

本文介绍原子核物理学和核磁共振成像之间的关系。要访问该信息提取每篇文章,请访问: