徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

厘米-克-秒制和洛伦兹-亥维赛单位制

快捷方式: 差异相似杰卡德相似系数参考

厘米-克-秒制和洛伦兹-亥维赛单位制之间的区别

厘米-克-秒制 vs. 洛伦兹-亥维赛单位制

厘米-克-秒單位制或厘米-克-秒系統(英文:centimetre-gram-second system,故常簡稱CGS制)是一種物理單位的系統制度,分別以厘米、克及秒為長度、質量及時間的基本單位。 在力學單位方面厘米-克-秒單位制是一致的,但在電學單位方面則有幾種變體。此單位系統後來被MKS--取代,也就是米-千克-秒系統(meter-kilogram-second system),而其又被國際單位制(SI system)所取代;國際單位制具有MKS制的三個基本單位,再加上凱氏溫標、安培、燭光及莫耳,有許多工程及科學領域只使用國際單位制,不過仍有一些領域常使用厘米-克-秒單位制。 在量測純力學系統時(即只和長度、質量、力、壓力、能量等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換相當單純及明確。單位間的轉換係數均為10的次幂,均可由以下關係推導而成;100 cm. 洛伦兹-亥维赛单位制(或称亥维赛-洛伦兹单位制)是一种衍生自厘米-克-秒制的单位系统,主要用于电磁学领域。其得名于荷兰物理学家亨德里克·洛伦兹与英国数学家奥利弗·亥维赛。与同是衍生自厘米-克-秒制的高斯单位制类似,在使用这种单位制时,电常数及磁常数并不在方程中出现,而是整合于相关的单位中。相对于国际单位制,洛伦兹-亥维赛单位制可以视作调整麦克斯韦方程组,归一与,转而在麦克斯韦方程组中使用光速的结果。 与国际单位制类似,洛伦兹-亥维赛单位制是有理化的,即在方程中不会出现系数。这一点与同是衍生自CGS制的高斯单位制不同。正是由于这一单位制是有理化的,其会特别符合量子场论的需求:在该理论所涉及的拉格朗日量中不会出现系数。同时,电荷、电磁场依据洛伦兹-亥维赛单位制所得到的定义也会由于系数而发生改变。洛伦兹-亥维赛单位制在弦论这样计算所涉及的空间维度大于三的情形中特别适用,并且还常用于狭义相对论计算。.

之间厘米-克-秒制和洛伦兹-亥维赛单位制相似

厘米-克-秒制和洛伦兹-亥维赛单位制有(在联盟百科)14共同点: 库仑定律光速国际单位制磁化率磁矩磁通量真空电容率电阻电阻率电感麦克斯韦方程组電場電容電荷

库仑定律

库仑定律(Coulomb's law),法国物理学家查尔斯·库仑於1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。庫侖定律闡明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。.

厘米-克-秒制和库仑定律 · 库仑定律和洛伦兹-亥维赛单位制 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

光速和厘米-克-秒制 · 光速和洛伦兹-亥维赛单位制 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

厘米-克-秒制和国际单位制 · 国际单位制和洛伦兹-亥维赛单位制 · 查看更多 »

磁化率

在電磁學中,磁化率(magnetic susceptibility)是表徵物質在外磁場中被磁化程度的物理量。.

厘米-克-秒制和磁化率 · 洛伦兹-亥维赛单位制和磁化率 · 查看更多 »

磁矩

磁矩是磁鐵的一種物理性質。處於外磁場的磁鐵,會感受到力矩,促使其磁矩沿外磁場的磁場線方向排列。磁矩可以用向量表示。磁鐵的磁矩方向是從磁鐵的指南極指向指北極,磁矩的大小取決於磁鐵的磁性與量值。不只是磁鐵具有磁矩,載流迴路、電子、分子或行星等等,都具有磁矩。 科學家至今尚未發現宇宙中存在有磁單極子。一般磁性物質的磁場,其泰勒展開的多極展開式,由於磁單極子項目恆等於零,第一個項目是磁偶極子項、第二個項目是磁四極子(quadrupole)項,以此类推。磁矩也分為磁偶極矩、磁四極矩等等部分。從磁矩的磁偶極矩、磁四極矩等等,可以分別計算出磁場的磁偶極子項目、磁四極子項目等等。隨著距離的增遠,磁偶極矩部分會變得越加重要,成為主要項目,因此,磁矩這術語時常用來指稱磁偶極矩。有些教科書內,磁矩的定義與磁偶極矩的定義相同。.

厘米-克-秒制和磁矩 · 洛伦兹-亥维赛单位制和磁矩 · 查看更多 »

磁通量

磁通量,符號為 \Phi_B,是通過某给定曲面的磁場(亦称为磁通量密度)的大小的度量。磁通量的国际单位制單位是韦伯。.

厘米-克-秒制和磁通量 · 洛伦兹-亥维赛单位制和磁通量 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

厘米-克-秒制和真空电容率 · 洛伦兹-亥维赛单位制和真空电容率 · 查看更多 »

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

厘米-克-秒制和电阻 · 洛伦兹-亥维赛单位制和电阻 · 查看更多 »

电阻率

電阻率(Resistivity),又称电阻系数、導電率(非電導率),是描述材料导电性能的物理量。 电阻率在数值上等于单位长度、单位截面的某种物質的电阻,数值上等于长度为一米,横截面为一平方米的该种物质的电阻大小。 电阻率的倒数为電導率。电阻率与导体的长度、横截面积等因素无关,是导体材料本身的电学性质,由导体的材料决定,且与温度有关。 电阻率在国际单位制的单位是Ω·m,读作欧姆米,简称欧米。常用单位为“歐姆·厘米”。 电阻率较低的物质称为导体,常见导体主要为金屬,而自然界中導電性最佳的是銀。其他不易導電的物質如玻璃、橡膠等,電阻率較高,一般稱為絕緣體。介于导体和绝缘体之间的物质(如硅)则称半导体。 電阻率的科學符號為 ρ 。.

厘米-克-秒制和电阻率 · 洛伦兹-亥维赛单位制和电阻率 · 查看更多 »

电感

電感(Inductance)是閉合迴路的一種屬性,即當通過閉合迴路的電流改變時,會出現電動勢來抵抗電流的改變。如果這種現象出現在自身迴路中,那麼這種電感稱為自感(self-inductance),是閉合迴路自己本身的屬性。假設一個閉合迴路的電流改變,由於感應作用在另外一個閉合迴路中產生電動勢,這種電感稱為互感(mutual inductance)。電感以方程式表達為 其中,\mathcal是電動勢,L是電感,i是電流,t是時間。 術語「電感」是1886年由奥利弗·赫维赛德命名。通常自感是以字母「L」標記,這可能是為了紀念物理學家海因里希·楞次的貢獻。互感是以字母「M」標記,是其英文(Mutual Inductance)的第一個字母。採用國際單位制,電感的單位是亨利(henry),標記為「H」,是因美國科學家約瑟·亨利命名。1 H.

厘米-克-秒制和电感 · 洛伦兹-亥维赛单位制和电感 · 查看更多 »

麦克斯韦方程组

#重定向 馬克士威方程組.

厘米-克-秒制和麦克斯韦方程组 · 洛伦兹-亥维赛单位制和麦克斯韦方程组 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

厘米-克-秒制和電場 · 洛伦兹-亥维赛单位制和電場 · 查看更多 »

電容

在電路學裡,給定電壓,電容器儲存電荷的能力,稱為電容(capacitance),標記為C。採用國際單位制,電容的單位是法拉(farad),標記為F。電路圖中多半以C開頭標示電容,例:C01、C02、C03、C100等。 平行板電容器是一種簡單的電容器,是由互相平行、以空間或介電質隔離的兩片薄板導體構成。假設這兩片導板分別載有負電荷與正電荷,所載有的電荷量分別為-Q\,\!、+Q\,\!,兩片導板之間的電位差為V,則這電容器的電容C為 1法拉等於1庫侖每伏特,即電容為1法拉的電容器,在正常操作範圍內,每增加1伏特的電位差可以多儲存1庫侖的電荷。 電容器所儲存的能量等於充電所做的功。思考前述平行板電容器,搬移微小電荷元素\mathrmq從帶負電薄板到帶正電薄板,每對抗1伏特的電位差,需要做功\mathrmW: 將這方程式積分,可以得到儲存於電容器的能量。從尚未充電的電容器(q.

厘米-克-秒制和電容 · 洛伦兹-亥维赛单位制和電容 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

厘米-克-秒制和電荷 · 洛伦兹-亥维赛单位制和電荷 · 查看更多 »

上面的列表回答下列问题

厘米-克-秒制和洛伦兹-亥维赛单位制之间的比较

厘米-克-秒制有101个关系,而洛伦兹-亥维赛单位制有37个。由于它们的共同之处14,杰卡德指数为10.14% = 14 / (101 + 37)。

参考

本文介绍厘米-克-秒制和洛伦兹-亥维赛单位制之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »