我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

印度-阿拉伯数字系统和算术

快捷方式: 差异相似杰卡德相似系数参考

印度-阿拉伯数字系统和算术之间的区别

印度-阿拉伯数字系统 vs. 算术

印度-阿拉伯数字系统,或稱印度數字系統,是一系列的十进制进位制的记数系统,起源于9世纪的印度。此系统像一种语系,当代的很多文字系统裡的不同记数符号都是起源于此系统。 印度-阿拉伯数字起源於印度的婆罗米数字,在中世纪时传入中东和西方。各个地区根据当地的文字系统改造了其数字字符。现在还在使用的三大分支是:. 算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

之间印度-阿拉伯数字系统和算术相似

印度-阿拉伯数字系统和算术有(在联盟百科)7共同点: 十进制算筹记数系统进位制有理数斐波那契数学

十进制

十進制是以10為基礎的數字系统。 十进制有两大类:.

十进制和印度-阿拉伯数字系统 · 十进制和算术 · 查看更多 »

算筹

算筹或称筭子、算子,是漢字文化圈古代一种十进制计算工具。起源于中國商代的占卜,占卜用现成的小木棍做计算,就是最早的算筹。古代筹、策、算三字都带竹头,表示用竹制成。策为束字加竹头,表示手握一束竖立的算策,作为占卜之用。筹可能代表周易八卦横向排列时用的阴阳竹,算筹横竖二式,可能来源于此。.

印度-阿拉伯数字系统和算筹 · 算术和算筹 · 查看更多 »

记数系统

记数系统,或称记数法或数制(numeral system、system of numeration),是使用一组數字符号来表示數的体系。 一个理想的记数系统能够:.

印度-阿拉伯数字系统和记数系统 · 算术和记数系统 · 查看更多 »

进位制

进位制是一种记数方式,亦称进位计数法或位值计数法。利用这种记数法,可以使用有限种数字符号来表示所有的数值。一种进位制中可以使用的数字符号的数目称为这种进位制的基数或底数。若一个进位制的基数为n,即可称之为n进位制,简称n进制。现在最常用的进位制是十进制,这种进位制通常使用10个阿拉伯数字(即0-9)进行记数。 我们可以用不同的进位制来表示同一个数。比如:十进数,可以用二进制表示为,也可以用五进制表示为,同时也可以用八进制表示为,可用十二進制表示為,亦可用十六进制表示为,它们所代表的数值都是一样的。 在10进制中有10个数字(0 - 9),比如 在16进制中有16个数字(0–9 和 A–F),比如 一般说来,b进制有b个数字,如果 a_3, a_2, a_1, a_0 是其中四个数字,那么就有.

印度-阿拉伯数字系统和进位制 · 算术和进位制 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

印度-阿拉伯数字系统和有理数 · 有理数和算术 · 查看更多 »

斐波那契

費波那契,又稱比薩的列奧納多(Leonardo Pisano Bigollo,或稱Leonardo of Pisa, Leonardo Pisano, Leonardo Bonacci, Leonardo Fibonacci,),意大利數學家,西方第一個研究費波那契數,並將現代書寫數和乘數的位值表示法系統引入歐洲。 列奥纳多的父親Guilielmo(威廉),外號Bonacci(意即「好、自然」或「簡單」)。因此列奧納多就得到了外號費波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。威廉是商人,在北非一帶工作(今阿尔及利亚贝贾亚),當時仍是小伙子的列奧納多已經開始協助父親工作。於是他就學會了阿拉伯數字。 有感使用阿拉伯數字比羅馬數字更有效,列奧納多前往地中海一帶向當時著名的阿拉伯數學家學習,約於1200年回國。1202年,27歲的他將其所學寫進《計算之書》(Liber Abaci)。這本書透過在記賬、重量計算、利息、匯率和其他的應用,顯示了新的數字系統的實用價值。這本書大大影響了歐洲人的思想,不過在十三世紀後印制術發明之前,十進制數字並不流行(例子:,Lienhart Holle在Ulm印制)。 列奧納多曾成為熱愛數學和科學的神聖羅馬帝國皇帝腓特烈二世的坐上客。.

印度-阿拉伯数字系统和斐波那契 · 斐波那契和算术 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

印度-阿拉伯数字系统和数学 · 数学和算术 · 查看更多 »

上面的列表回答下列问题

印度-阿拉伯数字系统和算术之间的比较

印度-阿拉伯数字系统有32个关系,而算术有98个。由于它们的共同之处7,杰卡德指数为5.38% = 7 / (32 + 98)。

参考

本文介绍印度-阿拉伯数字系统和算术之间的关系。要访问该信息提取每篇文章,请访问: