我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

卡爾·弗里德里希·高斯和欧几里得几何

快捷方式: 差异相似杰卡德相似系数参考

卡爾·弗里德里希·高斯和欧几里得几何之间的区别

卡爾·弗里德里希·高斯 vs. 欧几里得几何

约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo. 欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

之间卡爾·弗里德里希·高斯和欧几里得几何相似

卡爾·弗里德里希·高斯和欧几里得几何有(在联盟百科)4共同点: 实数几何原本非欧几里得几何数学

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

卡爾·弗里德里希·高斯和实数 · 实数和欧几里得几何 · 查看更多 »

几何原本

《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.

几何原本和卡爾·弗里德里希·高斯 · 几何原本和欧几里得几何 · 查看更多 »

非欧几里得几何

非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。.

卡爾·弗里德里希·高斯和非欧几里得几何 · 欧几里得几何和非欧几里得几何 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

卡爾·弗里德里希·高斯和数学 · 数学和欧几里得几何 · 查看更多 »

上面的列表回答下列问题

卡爾·弗里德里希·高斯和欧几里得几何之间的比较

卡爾·弗里德里希·高斯有85个关系,而欧几里得几何有35个。由于它们的共同之处4,杰卡德指数为3.33% = 4 / (85 + 35)。

参考

本文介绍卡爾·弗里德里希·高斯和欧几里得几何之间的关系。要访问该信息提取每篇文章,请访问: