卡塔兰数和行列式
快捷方式: 差异,相似,杰卡德相似系数,参考。
卡塔兰数和行列式之间的区别
卡塔兰数 vs. 行列式
卡塔兰数是組合數學中一個常在各種計數問題中出現的數列。以比利時的數學家欧仁·查理·卡特兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》中最先发明这种计数方式,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。 卡塔兰数的一般項公式為 C_n. 行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
之间卡塔兰数和行列式相似
卡塔兰数和行列式有1共同点(的联盟百科): 置換。
排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.
卡塔兰数和置換 · 置換和行列式 · 查看更多 »
上面的列表回答下列问题
- 什么卡塔兰数和行列式的共同点。
- 什么是卡塔兰数和行列式之间的相似性
卡塔兰数和行列式之间的比较
卡塔兰数有19个关系,而行列式有134个。由于它们的共同之处1,杰卡德指数为0.65% = 1 / (19 + 134)。
参考
本文介绍卡塔兰数和行列式之间的关系。要访问该信息提取每篇文章,请访问: