徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

单位圆和双曲几何

快捷方式: 差异相似杰卡德相似系数参考

单位圆和双曲几何之间的区别

单位圆 vs. 双曲几何

在数学中,单位圆是指半径为单位长度的圆,通常为欧几里得平面直角坐标系中圆心为(0,0)、半径为1的圆。单位圆对于三角函数和复数的坐标化表示有着重要意义。单位圆通常表示为S1。多维空间中,单位圆可推广为单位球。 如果单位圆上的点 (x, y)位于第一象限,那么x与y是斜边长度为1的直角三角形的两条边,根据勾股定理,x与y满足方程: 由于对于所有的x来说x2. 双曲几何又名罗氏几何(罗巴切夫斯基几何),是非欧几里德几何的一种特例。與欧几里德几何的差別在於第五條公理(公設)-平行公設。在欧几里德几何中,若平面上有一條直線R和線外的一點P,則存在唯一的一條線滿足通過P點且不與R相交(即R的平行線)。但在雙曲幾何中,至少可以找到兩條相異的直線,且都通過P點,並不與R相交,因此它違反了平行公設。然而,取代欧几里德几何中的平行公設的雙曲幾何本身並無矛盾之處,仍可以推得一系列屬於它的定理,這也說明了平行公設獨立於前四條公設,換句話說,無法由前四條公設推得平行公設。 到目前為止,數學家對雙曲幾何中平行線的定義尚未有共識,不同的作者會給予不同的定義。这里定義兩條逐漸靠近的線為漸進線,它們互相漸進;兩條有共同垂直線的線為超平行線,它們互相超平行,並且兩條線為平行線代表它們互相漸進或互相超平行。雙曲幾何還有一項性質,就是三角形的內角和小於一個平角(180°)。在極端的情況,三角形的三邊長趨近於無限,而三內角趨近於0°,此時該三角形稱作理想三角形。 双曲几何专门研究当平面变成鞍马型之后,平面几何到底还有几多可以适用,以及会有甚麼特別的现象產生。在双曲几何的环境裡,平面的曲率是負数。 通過兩個點可形成一個直線.

之间单位圆和双曲几何相似

单位圆和双曲几何有(在联盟百科)2共同点: 勾股定理

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

勾股定理和单位圆 · 勾股定理和双曲几何 · 查看更多 »

在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.

单位圆和角 · 双曲几何和角 · 查看更多 »

上面的列表回答下列问题

单位圆和双曲几何之间的比较

单位圆有26个关系,而双曲几何有19个。由于它们的共同之处2,杰卡德指数为4.44% = 2 / (26 + 19)。

参考

本文介绍单位圆和双曲几何之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »