之间协方差矩阵和特征脸相似
协方差矩阵和特征脸有(在联盟百科)2共同点: 主成分分析,特征值和特征向量。
主成分分析
在多元统计分析中,主成分分析(Principal components analysis,PCA)是一種分析、簡化數據集的技術。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。 主成分分析由卡爾·皮爾遜於1901年發明,用於分析數據及建立數理模型。其方法主要是通過對共變異數矩陣進行特征分解,以得出數據的主成分(即特征向量)與它們的權值(即特征值)。PCA是最簡單的以特征量分析多元統計分布的方法。其結果可以理解為對原數據中的方差做出解釋:哪一個方向上的數據值對方差的影響最大?換而言之,PCA提供了一種降低數據維度的有效辦法;如果分析者在原數據中除掉最小的特征值所對應的成分,那麼所得的低維度數據必定是最優化的(也即,這樣降低維度必定是失去訊息最少的方法)。主成分分析在分析複雜數據時尤為有用,比如人臉識別。 PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。如果一个多元数据集能够在一个高维数据空间坐标系中被显现出来,那么PCA就能够提供一幅比较低维度的图像,这幅图像即为在讯息最多的点上原对象的一个‘投影’。这样就可以利用少量的主成分使得数据的维度降低了。 PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。.
主成分分析和协方差矩阵 · 主成分分析和特征脸 ·
特征值和特征向量
在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.
上面的列表回答下列问题
- 什么协方差矩阵和特征脸的共同点。
- 什么是协方差矩阵和特征脸之间的相似性
协方差矩阵和特征脸之间的比较
协方差矩阵有16个关系,而特征脸有12个。由于它们的共同之处2,杰卡德指数为7.14% = 2 / (16 + 12)。
参考
本文介绍协方差矩阵和特征脸之间的关系。要访问该信息提取每篇文章,请访问: