之间勒貝格積分和勒贝格控制收敛定理相似
勒貝格積分和勒贝格控制收敛定理有(在联盟百科)8共同点: 可测函数,函数,积分,黎曼积分,极限,法图引理,测度,数学分析。
可测函数
可测函数是可测空间之间的保持(可測集合)結構的函数,也是勒貝格積分或實分析中主要討論的函數。数学分析中的不可测函数一般视为病态的。 如果Σ是集合X上的σ代数,Τ是Y上的σ代数,则函数f: X → Y是Σ/Τ可测的,如果Τ内的所有集合的原像都在Σ内。 根据惯例,如果Y是某个拓扑空间,例如实数空间\mathbb,或复数空间\mathbb,则我们通常使用Y上的开集所生成的波莱尔σ代数,除非另外说明。在这种情况下,可测空间(X,&Sigma)又称为波莱尔空间。 如果从上下文很清楚Τ和Σ是什么,则函数f可以称为Σ可测的,或干脆称为可测的。.
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
函数和勒貝格積分 · 函数和勒贝格控制收敛定理 ·
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
勒貝格積分和积分 · 勒贝格控制收敛定理和积分 ·
黎曼积分
在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.
极限
极限可以指:.
勒貝格積分和极限 · 勒贝格控制收敛定理和极限 ·
法图引理
在测度论中,法图引理说明了一个函数列的下极限的积分(在勒贝格意义上)和其积分的下极限的不等关系。法图引理的名称来源于法国数学家皮埃尔·法图(Pierre Fatou),被用来证明测度论中的法图-勒贝格定理和勒贝格控制收敛定理。.
测度
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.
勒貝格積分和测度 · 勒贝格控制收敛定理和测度 ·
数学分析
数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.
上面的列表回答下列问题
- 什么勒貝格積分和勒贝格控制收敛定理的共同点。
- 什么是勒貝格積分和勒贝格控制收敛定理之间的相似性
勒貝格積分和勒贝格控制收敛定理之间的比较
勒貝格積分有46个关系,而勒贝格控制收敛定理有14个。由于它们的共同之处8,杰卡德指数为13.33% = 8 / (46 + 14)。
参考
本文介绍勒貝格積分和勒贝格控制收敛定理之间的关系。要访问该信息提取每篇文章,请访问: