我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

勒让德符号和費馬數

快捷方式: 差异相似杰卡德相似系数参考

勒让德符号和費馬數之间的区别

勒让德符号 vs. 費馬數

勒让德符号,或二次特征,是一个由阿德里安-马里·勒让德在1798年尝试证明二次互反律时引入的函数。这个符号是许多高次剩余符号的原型;其它延伸和推广包括雅可比符号、克罗内克符号、希尔伯特符号,以及阿廷符号。. 費馬數是以数学家费马命名一组自然数,具有形式: 其中n为非负整数。 若2n + 1是素数,可以得到n必须是2的幂。(若n.

之间勒让德符号和費馬數相似

勒让德符号和費馬數有(在联盟百科)3共同点: 二次互反律萊昂哈德·歐拉欧拉准则

二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程x^2 \equiv p \pmod q 之整数解的存在性的定律。二次互反律揭示了方程x^2 \equiv p \pmod q 可解和 x^2 \equiv q \pmod p 可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。 二次互反律常用勒让德符号表述:对于两个奇素数 p 和 q, 其中\left(\tfrac \right) 是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。 欧拉和勒让德都曾经提出过二次互反律的猜想。但第一个严格的证明是由高斯在1796年作出的,随后他又发现了另外七个不同的证明。在《算数研究》一书和相关论文中,高斯将其称为“基石”: 此基石應當被視為此類型的定理中最為典雅的其中之一。(Art. 151) 私下里高斯把二次互反律誉为算术理论中的宝石,是一个黄金定律。 高斯之后雅可比、柯西、刘维尔、克罗内克、弗洛贝尼乌斯等也相继给出了新的证明。至今,二次互反律已有超过200个不同的的证明。二次互反律可以推广到更高次的情况,如三次互反律等等。.

二次互反律和勒让德符号 · 二次互反律和費馬數 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

勒让德符号和萊昂哈德·歐拉 · 萊昂哈德·歐拉和費馬數 · 查看更多 »

欧拉准则

在数论中,二次剩餘的歐拉判別法(又稱歐拉準則)是用来判定给定的整数是否是一个质数的二次剩余。.

勒让德符号和欧拉准则 · 欧拉准则和費馬數 · 查看更多 »

上面的列表回答下列问题

勒让德符号和費馬數之间的比较

勒让德符号有16个关系,而費馬數有27个。由于它们的共同之处3,杰卡德指数为6.98% = 3 / (16 + 27)。

参考

本文介绍勒让德符号和費馬數之间的关系。要访问该信息提取每篇文章,请访问: