我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

勒穆瓦纳猜想和半素数

快捷方式: 差异相似杰卡德相似系数参考

勒穆瓦纳猜想和半素数之间的区别

勒穆瓦纳猜想 vs. 半素数

勒穆瓦纳猜想(Lemoine's conjecture)或稱為李維猜想,是數論中的未解問題之一,其型式類似弱哥德巴赫猜想。其陳述為: 若以數學式表示,則對於每一個大於2的整數n,都可以找到質數p和q,滿足以下的方程式: 有一個類似的猜想,為"任何正奇數皆可表為2n²+p的形式,其中,n為自然數或0,p為質數",一般認為,它在某一數之後均成立,而在小於121,000的所有奇數中,只有5777跟5993不能表為上述形式。. 数学中,两个素数的乘积所得的自然数我们称之为半素数(也叫双素数,二次殆素数)。开始的几个半素数是4, 6, 9, 10, 14, 15, 21, 22, 25, 26,...

之间勒穆瓦纳猜想和半素数相似

勒穆瓦纳猜想和半素数有(在联盟百科)2共同点: 素数数论

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

勒穆瓦纳猜想和素数 · 半素数和素数 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

勒穆瓦纳猜想和数论 · 半素数和数论 · 查看更多 »

上面的列表回答下列问题

勒穆瓦纳猜想和半素数之间的比较

勒穆瓦纳猜想有6个关系,而半素数有9个。由于它们的共同之处2,杰卡德指数为13.33% = 2 / (6 + 9)。

参考

本文介绍勒穆瓦纳猜想和半素数之间的关系。要访问该信息提取每篇文章,请访问: