之间势 (数学)和连续统假设相似
势 (数学)和连续统假设有(在联盟百科)11共同点: 基数 (数学),基數,子集,实数,對角論證法,序数,公理化集合论,艾禮富數,选择公理,有限集合,无限集合。
基数 (数学)
在日常交流中,基數或量數是對應量詞的數,例如「一顆蘋果」中的「一」。與序數相對,序數是對應排列的數,例如「第一名」中的「一」及「二年級」中的「二」。 在數學上,基數或势,即集合中包含的元素的「个数」(參見势的比较),是日常交流中基數的概念在數學上的精確化(並使之不再受限於有限情形)。有限集合的基數,其意義與日常用語中的「基數」相同,例如\的基數是3。無限集合的基數,其意義在於比較兩個集的大小,例如整數集和有理數集的基數相同;整數集的基數比實數集的小。.
势 (数学)和基数 (数学) · 基数 (数学)和连续统假设 ·
基數
#重定向 基数.
子集
子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
對角論證法
对角论证法是乔治·康托尔於1891年提出的用于说明实数集合是不可数集的证明。 对角线法并非康托尔关于实数不可数的第一个证明,而是发表在他第一个证明的三年后。他的第一个证明既未用到十进制展开也未用到任何其它數系。自从该技巧第一次使用以来,在很大范围内的证明中都用到了类似的证明构造方法,它們一般亦稱為對角論證法。.
序数
數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.
公理化集合论
在數學中,公理化集合论是集合論透過建立一階邏輯的嚴謹重整,以解決樸素集合論中出現的悖論。集合論的基礎主要由德國數學家格奧爾格·康托爾在19世紀末建立。.
公理化集合论和势 (数学) · 公理化集合论和连续统假设 ·
艾禮富數
在集合論中,--,又稱--,是一連串超窮基數。其標記符號為(由希伯來字母(aleph)演變而來)加角標表示。 可數集(包括自然數)的勢標記為\aleph_0,下一個較大的勢為\aleph_1,再下一個是\aleph_2,以此類推。一直繼續下來,便可以對任一序數定義一個基數\aleph_\alpha。 這一概念來自於康托尔,他定義了勢,並认识到无穷集合是可以有不同的勢的。 阿列夫數与一般在代數與微積分中出現的無限 不同。阿列夫數用来衡量集合的大小,而無限只是在極限的寫法中出現,或是定義成擴展的實數軸上的端點。某些阿列夫數會大於另一些阿列夫數,而無限只是無限而已。.
选择公理
选择公理(Axiom of Choice,縮寫AC)是数学中的一条集合论公理。这条公理声明,对所有非空指标集族 (S_i)_,总存在一个索引族 (x_i)_,对每一个 i \in I,均有 x_i \in S_i。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。 非正式地說,选择公理声明:給定一些盒子(可以是無限個),每个盒子中都含有至少一个小球,那么可以作出这样一种选择,使得可从每个盒子中恰好选出一个小球。在很多情况下这样的选择可不借助选择公理;尤其是在“盒子个数有限”和“存在具體的選擇規則”(當每個盒子都恰好只有一个小球具有某項特征)这两种情况下。再举一个例子,假设有许多(甚至是无限)双鞋子,则我们可以选取每双鞋左边的鞋子构成一个具体的选择。然而,假设有无限双袜子(假设每双袜子都没有可区分的特征),在这种情况下,有效的选择只能通过选择公理得到。 尽管曾具有争议性,选择公理現在已被大多数数学家毫无保留地使用着,例如带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。数学家们使用选择公理的原因是,有许多被普遍接受的数学定理,比如是吉洪诺夫定理,都需要选择公理来证明。現代的集合论学家也研究与选择公理相矛盾的公理,例如。 在一些構造性數學的理論中會避免选择公理的使用,不過也有的將选择公理包括在內。.
有限集合
数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.
无限集合
无限集合是由无限个元素组成的集合,也称无穷集合。集合論中,集合主要分為有限集合與無限集合,有限集合很多的性質也是顯而易見的,反之,因為無限集合的非有限性,即使無限集合的一些基本性質也變得並不顯而易見,個別的數學家甚至質疑諸如选择公理等基本公設使用在無限集合身上是否仍然正確。罗素悖论提出以後,一些激進的數學哲學家提倡禁止在數學中使用無限集合以挽救第三次數學危機。 無限集合在數學中無處不在,一般常見的例子有整數集、有理集等。一般來說,無限集合還分為可數集和不可數集。.
上面的列表回答下列问题
- 什么势 (数学)和连续统假设的共同点。
- 什么是势 (数学)和连续统假设之间的相似性
势 (数学)和连续统假设之间的比较
势 (数学)有24个关系,而连续统假设有30个。由于它们的共同之处11,杰卡德指数为20.37% = 11 / (24 + 30)。
参考
本文介绍势 (数学)和连续统假设之间的关系。要访问该信息提取每篇文章,请访问: