我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

加法逆元和标量乘法

快捷方式: 差异相似杰卡德相似系数参考

加法逆元和标量乘法之间的区别

加法逆元 vs. 标量乘法

對於一個數n,存在一加法逆元(Additive Inverse,又稱相反數),其與n的和為零(加法單位元素)。n的加法逆元表示為-n。 在實數範圍內,兩個相反數相乘必不為正數。又,一個數x的相反數-x,被稱為其加法逆元;相對地,一個數x的倒數1/x,則被稱為其乘法逆元。. 标量乘法(scalar multiplication)是線性代數中向量空間的一種基本運算(更廣義的,是抽象代數的一個模))。在直覺上,將一個實數向量和一個正的實數進行标量乘法,也就是將其長度乘以此标量,方向不變。标量一詞也從此用法而來:可將向量缩放的量。标量乘法是將標量和向量相乘,結果得到一向量,和內積將兩向量相乘,得到一純量不同。.

之间加法逆元和标量乘法相似

加法逆元和标量乘法有(在联盟百科)6共同点: 加法向量空间乘法交換律二元运算结合律

加法

加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.

加法和加法逆元 · 加法和标量乘法 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

加法逆元和向量空间 · 向量空间和标量乘法 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

乘法和加法逆元 · 乘法和标量乘法 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

交換律和加法逆元 · 交換律和标量乘法 · 查看更多 »

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

二元运算和加法逆元 · 二元运算和标量乘法 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

加法逆元和结合律 · 标量乘法和结合律 · 查看更多 »

上面的列表回答下列问题

加法逆元和标量乘法之间的比较

加法逆元有14个关系,而标量乘法有25个。由于它们的共同之处6,杰卡德指数为15.38% = 6 / (14 + 25)。

参考

本文介绍加法逆元和标量乘法之间的关系。要访问该信息提取每篇文章,请访问: