之间加法器和电子学相似
加法器和电子学有(在联盟百科)9共同点: 加法器,二进制,微处理器,电子学,电路,邏輯閘,電子計算機,数字电路,晶体管。
加法器
在电子学中,加法器(adder)是一种用于执行加法运算的数字电路部件,是构成电子计算机核心微处理器中算术逻辑单元的基础。在这些电子系统中,加法器主要负责计算地址、索引等数据。除此之外,加法器也是其他一些硬件,例如:二进制数乘法器的重要组成部分。 尽管可以为不同计数系统设计专门的加法器,但是由于数字电路通常以二进制为基础,因此二进制加法器在实际应用中最为普遍。在数字电路中,二进制数的减法可以通过加一个负数来间接完成。为了使负数的计算能够直接用加法器来完成,计算中的负数可以使用二补数(补码)来表示,具体的细节可以参考数字电路相关的书籍。.
二进制
在數學和數字電路中,二進制(binary)數是指用二進制記數系統,即以2為基數的記數系統表示的數字。這一系統中,通常用兩個不同的符號0(代表零)和1(代表一)來表示。以2為基數代表系統是二進位制的。數字電子電路中,邏輯門的實現直接應用了二進制,因此現代的計算機和依赖計算機的設備裡都用到二進制。每個數字稱為一個位元(二進制位)或比特(Bit,Binary digit的縮寫)。.
微处理器
微处理器(Microprocessor,缩写:µP或uP)是可程式化特殊集成电路。一种处理器,其所有元件小型化至一块或数块集成电路内。一种集成电路,可在其一端或多端接受编码指令,执行此指令并输出描述其状态的信号。这些指令能在内部输入、集中或存放起来。又称半导体中央处理器(CPU),是微型计算机的一个主要部件。微处理器的元件常安装在一个单片上或在同一组件内,但有时分布在一些不同芯片上。在具有固定指令集的微型计算机中,微处理器由算术逻辑单元和控制逻辑单元组成。在具有微程序控制的指令集的微型计算机中,它包含另外的控制存储单元。用作处理通用资料时,叫作中央处理器。這也是最为人所知的应用(如:Intel Pentium CPU);专用于图像资料处理的,叫作Graphics Processing Unit图形处理器(如Nvidia GeForce 9X0 GPU);用于音讯资料处理的,叫作Audio Processing Unit音讯处理单元(如Creative emu10k1 APU)等等。从物理角度来说,它就是一块集成了数量庞大的微型晶体管与其他电子元件的半导体集成电路芯片。 之所以会被称为微處理器,並不只是因为它比迷你电脑所用的处理器还要小而已。最主要的区别別,还是因为当初各大晶片厂之制程,已经进入了1 微米的阶段,用1 微米的制造,所產製出來的处理器晶片,厂商就会在产品名称上用「微」字,强调他们很高科技。与现在的许多商业广告中,「纳米」字眼时常出现一样。 早在微处理器问世之前,電子計算機的中央处理单元就经历了从真空管到晶体管以及再后来的离散式TTL集成电路等几个重要阶段。甚至在電子計算機以前,还出现过以齿轮、轮轴和杠杆为基础的机械结构计算机。,但那个时代落后的制造技术根本没有能力将这个设计付诸实现。微處理器的發明使得複雜的電路群得以製成單一的電子元件。 从1970年代早期开始,微处理器性能的提升就基本上遵循着IT界著名的摩尔定律。这意味着在过去的30多年里每18个月,CPU的计算能力就会翻倍。大到巨型机,小到筆記型电脑,持续高速发展的微处理器取代了诸多其他计算形式而成为各个类别各个领域所有计算机系统的计算动力之源。.
电子学
电子学(Electronics),作用于包括有源电子元器件(例如真空管、二极管、三极管、集成电路)和与之相关的无源器件电路的互连技术。有源器件的非线性特性和控制电子流动的能力能够放大微弱信号,并且电子学广泛应用于信息处理、通信和信号处理。电子器件的开关特性使处理数字信号成为可能。电路板、电子封装等互连技术和其他各种形式的通信基础元件完善了电路功能,并使连接在一起的元件成为一个正常工作的系统。 电子学有别于電機(Electrical)和機電(Electro-mechanical)科学与技术,电气和电机科学与技术是处理电能的产生、分布、开关、储存和转换,通过电线、电动机、发电机、电池、开关、中继器、变压器、电阻和其他无源器件从其他形式的能量转换为电能。 1897年,約瑟夫·湯姆森發現電子的存在,这是電子學的起源。早期的電子學使用真空管來控制電子的流動,但其存在成本高及體積大等缺點。现如今,大多數电子设备都使用半导体器件来控制电子。真空管至今仍有一些特殊应用,例如、阴极射线管、专业音频设备和像多腔磁控管等微波设备。 半导体器件的研究和相关技术是固体物理学的一个分支,但是电子电路的设计和搭建来解决实际问题却是电子工程的范围。本文专注于电子学的工程方面。.
电路
电路(Electrical circuit)或稱电子迴路,是由电气设备和--, 按一定方式連接起来,为电荷流通提供了路径的总体,也叫电子线路或稱電氣迴路,簡稱网络或迴路。如電源、电阻、电容、电感、二极管、三极管、電晶體、集成電路和电键等,构成的网络、硬體。负电荷可以在其中运动。.
邏輯閘
逻辑门是在集成電路上的基本組件。简单的邏輯閘可由晶体管组成。這些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现邏輯运算。常见的逻辑门包括“與”閘,“或”閘,“非”閘,“異或”閘(也稱:互斥或)等等。 逻辑门是組成數字系統的基本結構,通常组合使用實現更為複雜的邏輯運算。一些廠商通過邏輯門的組合生產一些實用、小型、集成的產品,例如可程式邏輯裝置等。.
電子計算機
--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.
数字电路
数字电路或数字集成电路是由许多的逻辑门组成的复杂电路。与模拟电路相比,它主要进行数字信号的处理(即信号以0与1两个状态表示),因此抗干扰能力较强。数字集成电路有各种门电路、触发器以及由它们构成的各种组合逻辑电路和时序逻辑电路。一个数字系统一般由控制部件和运算部件组成,在时脈的驱动下,控制部件控制运算部件完成所要执行的动作。通过類比數位轉換器、數位類比轉換器,数字电路可以和模拟电路互相连接。.
晶体管
晶体管(transistor),早期音譯為穿細絲體,是一种-zh-cn:固体; zh-tw:固態;--zh-cn:半导体器件; zh-tw:半導體元件;-,可以用于放大、开关、稳压、信号调制和许多其他功能。在1947年,由約翰·巴丁、沃爾特·布喇頓和威廉·肖克利所發明。當時巴丁、布喇頓主要發明半導體三極體;肖克利則是發明PN二極體,他們因為半導體及電晶體效應的研究獲得1956年諾貝爾物理獎。 電晶體由半導體材料組成,至少有三個對外端點(稱為極),(C)集極、(E)射極、(B)基極,其中(B)基極是控制極,另外兩個端點之間的伏安特性關係是受到控制極的非線性電阻關係。晶体管基于输入的電流或电压,改變輸出端的阻抗 ,從而控制通過輸出端的电流,因此晶體管可以作為電流開關,而因為晶体管輸出信號的功率可以大於輸入信號的功率,因此晶体管可以作為电子放大器。.
上面的列表回答下列问题
- 什么加法器和电子学的共同点。
- 什么是加法器和电子学之间的相似性
加法器和电子学之间的比较
加法器有41个关系,而电子学有105个。由于它们的共同之处9,杰卡德指数为6.16% = 9 / (41 + 105)。
参考
本文介绍加法器和电子学之间的关系。要访问该信息提取每篇文章,请访问: