之间分类公理和集合论相似
分类公理和集合论有(在联盟百科)14共同点: 子集,一阶逻辑,交集,当且仅当,冯诺伊曼-博内斯-哥德尔集合论,公理化集合论,公理模式,空集,策梅洛-弗兰克尔集合论,类 (数学),罗素悖论,新基础集合论,数学,替代公理。
子集
子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.
一阶逻辑
一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.
交集
数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
冯诺伊曼-博内斯-哥德尔集合论
在数学基础中,冯·诺伊曼-博内斯-哥德尔集合论(von Neumann–Bernays–Gödel Set Theory,NBG)是设计生成同Zermelo-Fraenkel 集合论与选择公理一起(ZFC)同样结果的集合论公理系统,但只有有限数目的公理,即是不使用公理模式。 NBG首先由冯·诺伊曼在1920年代提出,從1937年开始由作修改,在1940年由哥德尔进一步简化。 不像ZFC,NBG只有有限多个公理。Richard Montague在1961年证明,不可能找到在逻辑上等价于ZFC的有限数目的公理;因此NBG的语言有能力谈论真类同谈论集合一样,并且关于集合的陈述在NBG中是可证明的,当且仅当它在ZFC中是可证明的(就是说NBG是ZFC的保守扩展)。.
冯诺伊曼-博内斯-哥德尔集合论和分类公理 · 冯诺伊曼-博内斯-哥德尔集合论和集合论 ·
公理化集合论
在數學中,公理化集合论是集合論透過建立一階邏輯的嚴謹重整,以解決樸素集合論中出現的悖論。集合論的基礎主要由德國數學家格奧爾格·康托爾在19世紀末建立。.
公理模式
在數理邏輯裡,公理模式廣義化了公理這個概念。 公理模式是個在公理系統的語言中的一個合式公式,其中有一個以上的模式變數出現。這些模式變數屬於元語言的一種,代表系統內的任一項或任一公式。這些變數通常需要有部分是自由的,亦即有些不出現在公式或項中的變數。 若模式變數能替換的公式或項的數目是可數無限的,此公理模式則代表了可數無限個公理。這些公理通常可以被遞迴地定義。若一個理論不需要使用到公理模式來公理化,則稱之為「可有限公理化的」。可有限公理化的理論在元數學中被認為是較為重要的,即使這些理論在推導工作上較少有實際的用途。 公理模式兩個極知名的例子為:.
空集
集是不含任何元素的集合,數學符號為\empty、\varnothing或\。.
策梅洛-弗兰克尔集合论
梅洛-弗兰克尔集合论(Zermelo-Fraenkel Set Theory),含选择公理時常简写为ZFC,是在数学基础中最常用形式的公理化集合论,不含選擇公理的則簡寫為ZF。.
分类公理和策梅洛-弗兰克尔集合论 · 策梅洛-弗兰克尔集合论和集合论 ·
类 (数学)
在集合論及其數學應用中,類是由集合(或其他數學物件)的搜集(collection),可以依所有成員所共享的性質被無歧定義。有些類是集合(例如由所有偶數構成的類),但有些則不是(如所有序數所構成的類或所有集合所構成的類)。一個不是集合的類被稱之為真類。一个是集合的类被称为“小类”。 在數學裡,有許多物件對集合而言太大,而必須以類來描述,像是大的範疇和超實數的類體之類等。要證明一給定「事物」為一真類,一般的做法是證明此一「事物」至少有著如序數一般多的元素。有關此一證明的例子,請參見。 真類不能是一個集合或者是一個類的元素,而且不受ZF集合論中的公理所限制;因此避免掉了許多樸素集合論中的悖論。反而,這些悖論成了證明某一個類是否為真類的方法之一。例如,羅素悖論可以證明由所有不包含集合自身的集合所構成的類是一個真類,而布拉利-福尔蒂悖论則可證明所有序數所構成的類是一個真類。 標準的ZF集合論公理不會論及到類;而在元語言中,類只作為邏輯公式的等價類而存在。馮諾伊曼-博內斯-哥德爾集合論則採取了另一種方式;類在此一理論中是基礎的物件,而集合則被定義為可以是其他某些類的元素的類。真類,則為不可以是其他任何類的元素的類。 在其他集合論如新基础集合论或半集合的理論中,「真類」的概念依然是有意義的(不是任一堆事物都會是集合),但對集合特質的認定並非依據其大小。例如,所有包含全集的集合論都會有個是集合的子類的真類。 「類」這一詞有時會和「集合」同義,最為人知的是「等價類」這一術語。這種用法是因為從前對類和集合不如現今一樣地區別的緣故。許多19世紀之前對「類」的討論提及的實際上是集合,又或者會是個更為模糊的概念。.
罗素悖论
罗素悖论(Russell's paradox),也称为理发师悖论,是英國哲學家罗素於1901年提出的悖论,一个关于类的内涵问题。罗素悖论当时的提出,造成了第三次数学危机。.
新基础集合论
在数理逻辑中,新基础集合論(NF)是公理化集合論的一種,由蒯因构想出來作为对《数学原理》中类型论的简化。蒯因1937年於《数理逻辑的新基础》一文中首次提及NF(此即其名稱的由來)。請注意,此条目大多是在談论NFU,這是Jensen於1969年所提出,並由Holmes於1998年闡述的一重要变体。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
替代公理
在公理化集合论和使用它的逻辑、数学和计算机科学分支中,替代公理模式是 Zermelo-Fraenkel 集合论的一个公理模式,它本质上断言一个集合在一个映射(泛函谓词)下的像也是一个集合。它对于构造特定的大集合是必需的。.
上面的列表回答下列问题
- 什么分类公理和集合论的共同点。
- 什么是分类公理和集合论之间的相似性
分类公理和集合论之间的比较
分类公理有35个关系,而集合论有97个。由于它们的共同之处14,杰卡德指数为10.61% = 14 / (35 + 97)。
参考
本文介绍分类公理和集合论之间的关系。要访问该信息提取每篇文章,请访问: