之间分數和集合 (数学)相似
分數和集合 (数学)有(在联盟百科)5共同点: 交換律,分配律,结合律,自然数,整数。
交換律
交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.
交換律和分數 · 交換律和集合 (数学) ·
分配律
在抽象代数中,分配律是二元运算的一个性质,它是基本代数中的分配律的推广。.
分數和分配律 · 分配律和集合 (数学) ·
结合律
在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.
分數和结合律 · 结合律和集合 (数学) ·
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
分數和自然数 · 自然数和集合 (数学) ·
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
分數和整数 · 整数和集合 (数学) ·
上面的列表回答下列问题
- 什么分數和集合 (数学)的共同点。
- 什么是分數和集合 (数学)之间的相似性
分數和集合 (数学)之间的比较
分數有21个关系,而集合 (数学)有32个。由于它们的共同之处5,杰卡德指数为9.43% = 5 / (21 + 32)。
参考
本文介绍分數和集合 (数学)之间的关系。要访问该信息提取每篇文章,请访问: