我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

分子轨道理论和混成軌域

快捷方式: 差异相似杰卡德相似系数参考

分子轨道理论和混成軌域之间的区别

分子轨道理论 vs. 混成軌域

分子轨道理论(),簡稱MO理论,是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的了解,即认为分子中的电子围绕整个分子运动。 计算化学中常以原子轨道线性组合近似来计算分子轨道波函数: 式中的cij系数可由将等式代入薛定谔方程以及应用变分原理求得。简单地讲,该方法意即,分子轨道由原子轨道组合而成。原子轨道波函数各乘以某一系数相加或相减,得到分子轨道波函数。组合时原子轨道对分子轨道的贡献体现在系数上,组合前后轨道总数不变。 利用分子轨道理论与价键理论通常只是从一个问题的两个方面去看问题,常常会得到相同的结论。只是有时分子轨道理论的思想与计算过于复杂,在研究简单问题时,价键理论反而更显得简单明了。或者说,价键理论对于分子定态的性质(键长,键角等)的解释和分子轨道理论相近,而分子轨道理论在研究和电子激发相关的性质时(分子颜色,光电子能谱等)更为有效。. 混成軌域(Hybrid orbital)是指原子軌域經混成(hybridization)後所形成的能量简并的新轨道,用以定量描述原子間的鍵結性質。與價層電子對互斥理論可共同用來解釋分子軌域的形狀。混成概念是萊納斯·鮑林於1931年提出。.

之间分子轨道理论和混成軌域相似

分子轨道理论和混成軌域有(在联盟百科)3共同点: 原子轨道分子轨道薛定谔方程

原子轨道

原子軌域(atomorbital;atomic orbital),又稱軌態,是以數學函數描述原子中電子似波行為陳藝菁、張祖辛,,國科會高瞻計畫資源平台。2010年12月11日查閱。。此波函數可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置。「軌域」便是指在波函數界定下,電子在--空間出現機率較大的區域。具體而言,原子軌域是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌域波函數描述。 現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)運行。然而,電子不能被視為形狀固定的固體粒子,原子軌域也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的「大氣」(電子),分布於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌域才能精準符合「大氣」的形狀。當原子中有越來越多電子時,電子越傾向均勻分布在原子核四周的空間體積中,因此「電子雲」越傾向分布在特定球形區域內(區域內電子出現機率較高)。 在原子物理學的運算中,複雜的電子函數常被簡化成較容易的原子軌域函數組合。雖然多電子原子的電子並不能以「一或二個電子之原子軌域」的理想圖像解釋,它的波函數仍可以分解成原子軌域函數組合,以原子軌域理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌域「構成」,每個原子軌域內只含一或二個電子。.

分子轨道理论和原子轨道 · 原子轨道和混成軌域 · 查看更多 »

分子轨道

分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.

分子轨道和分子轨道理论 · 分子轨道和混成軌域 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

分子轨道理论和薛定谔方程 · 混成軌域和薛定谔方程 · 查看更多 »

上面的列表回答下列问题

分子轨道理论和混成軌域之间的比较

分子轨道理论有22个关系,而混成軌域有26个。由于它们的共同之处3,杰卡德指数为6.25% = 3 / (22 + 26)。

参考

本文介绍分子轨道理论和混成軌域之间的关系。要访问该信息提取每篇文章,请访问: