我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

函数和距离函数

快捷方式: 差异相似杰卡德相似系数参考

函数和距离函数之间的区别

函数 vs. 距离函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x). 在数学中,度量(度規)或距离函数是個函數,定义了集合內每一對元素之间的距离。带有度量的集合叫做度量空间。度量能導出集合上的拓扑,但不是所有拓扑都可以由度量生成。当一个拓扑空间的拓扑可以由度量来描述的时候,則稱此一拓扑空间为可度量化的。 在微分几何中,“度量”一詞也用来称呼定义為由微分流形的切向量映射至純量之雙線性形式,讓沿著曲線的距離可透過積分來取得。此一概念有個更适合的术语,稱之為度量张量(或黎曼度量)。.

之间函数和距离函数相似

函数和距离函数有(在联盟百科)6共同点: 实数范畴论集合正數数学曲线

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

函数和实数 · 实数和距离函数 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

函数和范畴论 · 范畴论和距离函数 · 查看更多 »

集合

集合可以指:.

函数和集合 · 距离函数和集合 · 查看更多 »

正數

正数,在数学上是指大于0的实数,如1、3.7,1.5等,与负数相对。和实数一样,正數也是一個不可數的無限集合。這個集合在数学上通常用粗體R+或ℝ+来表示。正数与0统称非负数。.

函数和正數 · 正數和距离函数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

函数和数学 · 数学和距离函数 · 查看更多 »

曲线

曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。 曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。.

函数和曲线 · 曲线和距离函数 · 查看更多 »

上面的列表回答下列问题

函数和距离函数之间的比较

函数有75个关系,而距离函数有57个。由于它们的共同之处6,杰卡德指数为4.55% = 6 / (75 + 57)。

参考

本文介绍函数和距离函数之间的关系。要访问该信息提取每篇文章,请访问: