凸函数和四面體
快捷方式: 差异,相似,杰卡德相似系数,参考。
凸函数和四面體之间的区别
凸函数 vs. 四面體
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及t\in ,有 也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。 如果对于任意的t\in (0,1)有 若對於任意的x,y,z,其中x\le z\le y,都有f(z)\leq \max\, \,\,\, \forall x,y,z \,\,\, x\leq z\leq y,則稱函數f是幾乎凸的。. 四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.
之间凸函数和四面體相似
凸函数和四面體有1共同点(的联盟百科): 当且仅当。
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
凸函数和当且仅当 · 四面體和当且仅当 · 查看更多 »
上面的列表回答下列问题
- 什么凸函数和四面體的共同点。
- 什么是凸函数和四面體之间的相似性
凸函数和四面體之间的比较
凸函数有25个关系,而四面體有45个。由于它们的共同之处1,杰卡德指数为1.43% = 1 / (25 + 45)。
参考
本文介绍凸函数和四面體之间的关系。要访问该信息提取每篇文章,请访问: