我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

凱萊表和群

快捷方式: 差异相似杰卡德相似系数参考

凱萊表和群之间的区别

凱萊表 vs. 群

凱萊表,以19世紀英國數學家阿瑟·凱萊命名,通過在正方形表格中排列一個群的所有元素的所有可能乘積來描述有限群的結構,這讓人想起了加法或乘法表。群的很多性質,比如是否為阿貝爾群,哪個元素是哪個元素的逆元,和群的中心的大小和內容,都可以通過檢查它的凱萊表來輕易得出。 凱萊表的一個簡單例子是群 在普通的乘法下的表格: |- !style. 在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

之间凱萊表和群相似

凱萊表和群有(在联盟百科)11共同点: 加法中心 (群论)乘法交換律二元运算二面體群结合律阿瑟·凱萊阿贝尔群逆元素有限群

加法

加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.

凱萊表和加法 · 加法和群 · 查看更多 »

中心 (群论)

在抽象代数中,群G的中心Z\left(G\right)是所有在G中和G的所有元素可交换的元素的集合,也就是: 注意Z\left(G\right)是一个G的子群:若x和y在Z\left(G\right)中,则\left(xy\right)g.

中心 (群论)和凱萊表 · 中心 (群论)和群 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

乘法和凱萊表 · 乘法和群 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

交換律和凱萊表 · 交換律和群 · 查看更多 »

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

二元运算和凱萊表 · 二元运算和群 · 查看更多 »

二面體群

在數學中,二面體群 D_ 是正 n 邊形的對稱群,具有 2n 個元素。某些書上則記為 D_n。除了 n.

二面體群和凱萊表 · 二面體群和群 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

凱萊表和结合律 · 结合律和群 · 查看更多 »

阿瑟·凱萊

阿瑟·凱萊(Arthur Cayley,英語發音,),英國數學家。.

凱萊表和阿瑟·凱萊 · 群和阿瑟·凱萊 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

凱萊表和阿贝尔群 · 群和阿贝尔群 · 查看更多 »

逆元素

數學中,逆元素(Inverse element)推廣了加法中的加法逆元和乘法中的倒數。直觀地說,它是一個可以取消另一給定元素運算的元素。.

凱萊表和逆元素 · 群和逆元素 · 查看更多 »

有限群

在數學裡,有限群是有著有限多個元素的群。有限群理論中的某些部份在20世紀有著很深的研究,尤其是在局部分析和可解群與冪零群的理論中。期望有個完整的理論是太過火了:其複雜性會隨著群變得越大時而變得壓倒性地巨大。 較少壓倒性地,但仍然很有趣的是在有限域上的一些較小一般線性群。群論學家曾寫過:「有限群的典型例子為GL(n,q)-在q個元素的域上的n維一般線性群。學生在學此領域時,若以其他的例子來做介紹,則可能會被完全地誤導。(Bulletin (New Series) of the American Mathematical Society, 10 (1984) 121)此類型最小的群GL(2,3)的討論,見。 有限群和對稱有直接地關接,當其被限制在有限個轉變時。 其證明為,連續對稱,如李群中的,也會導致有限群,如外爾群。在此一方面,有限群和其性質將能夠用在如理論物理問題的重要地方,即使其用途在一開始並不顯著。 每一質數階的有限群都是循環群。.

凱萊表和有限群 · 有限群和群 · 查看更多 »

上面的列表回答下列问题

凱萊表和群之间的比较

凱萊表有22个关系,而群有222个。由于它们的共同之处11,杰卡德指数为4.51% = 11 / (22 + 222)。

参考

本文介绍凱萊表和群之间的关系。要访问该信息提取每篇文章,请访问: