我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

几何数论和连续函数

快捷方式: 差异相似杰卡德相似系数参考

几何数论和连续函数之间的区别

几何数论 vs. 连续函数

在数论中,几何数论研究凸体和在n维空间整数点向量问题。几何数论于1910由赫尔曼·闵可夫斯基创立。几何数论和数学其它领域有密切的关系,尤其研究在函数分析和丢番图逼近中,对有理数向无理数逼近问题。. 在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

之间几何数论和连续函数相似

几何数论和连续函数有1共同点(的联盟百科): 实数

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

几何数论和实数 · 实数和连续函数 · 查看更多 »

上面的列表回答下列问题

几何数论和连续函数之间的比较

几何数论有24个关系,而连续函数有41个。由于它们的共同之处1,杰卡德指数为1.54% = 1 / (24 + 41)。

参考

本文介绍几何数论和连续函数之间的关系。要访问该信息提取每篇文章,请访问: