之间几何学和数论相似
几何学和数论有(在联盟百科)12共同点: 卡爾·弗里德里希·高斯,千禧年大獎難題,古希腊,大卫·希尔伯特,代数几何,微积分学,萊昂哈德·歐拉,複分析,輾轉相除法,欧几里得,有限域,拉丁语。
卡爾·弗里德里希·高斯
约翰·卡爾·弗里德里希·高斯(Johann Karl Friedrich Gauß;), 德国数学家、物理学家、天文学家、大地测量学家,生于布伦瑞克,卒于哥廷根。高斯被认为是历史上最重要的数学家之一Dunnington, G. Waldo.
几何学和卡爾·弗里德里希·高斯 · 卡爾·弗里德里希·高斯和数论 ·
千禧年大獎難題
千禧年大獎難題(Millennium Prize Problems)是七個由美國克雷數學研究所(Clay Mathematics Institute,CMI)於2000年5月24日公佈的數學難題,解题总奖金700万美元。根據克雷數學研究所制定的規則,這一系列挑戰不限時間,題解必須發表在國際知名的出版物上,並經過各方驗證,只要通過兩年驗證期和专家小组审核,每解破一題可獲獎金100万美元deadurl。 這些難題旨在呼應1900年德國數學家大衛·希爾伯特在巴黎提出的23個歷史性數學難題,經過一百年,约17个難題至少已被部分解答。而千禧年大獎難題的破解,極有可能為密碼學、航天、通訊等領域帶來突破性進展。 迄今为止,在七个问题中,庞加莱猜想是唯一被解决的,2003年,俄罗斯数学家格里戈里·佩雷尔曼证明了它的正确性。而其它六道难题仍有待研究者探索。.
古希腊
位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.
大卫·希尔伯特
大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.
代数几何
代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
萊昂哈德·歐拉
莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.
複分析
複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.
輾轉相除法
在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.
欧几里得
欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.
有限域
在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.
拉丁语
拉丁语(lingua latīna,),羅馬帝國的奧古斯都皇帝時期使用的書面語稱為「古典拉丁語」,屬於印欧语系意大利語族。是最早在拉提姆地区(今意大利的拉齐奥区)和罗马帝国使用。虽然现在拉丁语通常被认为是一种死语言,但仍有少数基督宗教神职人员及学者可以流利使用拉丁语。罗马天主教传统上用拉丁语作为正式會議的语言和礼拜仪式用的语言。此外,许多西方国家的大学仍然提供有关拉丁语的课程。 在英语和其他西方语言创造新词的过程中,拉丁语一直得以使用。拉丁语及其后代罗曼诸语是意大利语族中仅存的一支。通过对早期意大利遗留文献的研究,可以证实其他意大利语族分支的存在,之后这些分支在罗马共和国时期逐步被拉丁语同化。拉丁语的亲属语言包括法利斯克语、奥斯坎语和翁布里亚语。但是,威尼托语可能是一个例外。在罗马时代,作为威尼斯居民的语言,威尼托语得以和拉丁语并列使用。 拉丁语是一种高度屈折的语言。它有三种不同的性,名词有七格,动词有四种词性变化、六种时态、六种人称、三种语气、三种语态、两种体、两个数。七格当中有一格是方位格,通常只和方位名词一起使用。呼格与主格高度相似,因此拉丁语一般只有五个不同的格。不同的作者在行文中可能使用五到七种格。形容词与副词类似,按照格、性、数曲折变化。虽然拉丁语中有指示代词指代远近,它却没有冠词。后来拉丁语通过不同的方式简化词尾的曲折变化,形成了罗曼语族。 拉丁语與希腊语同為影響歐美學術與宗教最深的语言。在中世纪,拉丁语是当时欧洲不同国家交流的媒介语,也是研究科学、哲学和神學所必须的语言。直到近代,通晓拉丁语曾是研究任何人文学科教育的前提条件;直到20世纪,拉丁语的研究才逐渐衰落,重点转移到对當代语言的研究。.
上面的列表回答下列问题
- 什么几何学和数论的共同点。
- 什么是几何学和数论之间的相似性
几何学和数论之间的比较
几何学有142个关系,而数论有74个。由于它们的共同之处12,杰卡德指数为5.56% = 12 / (142 + 74)。
参考
本文介绍几何学和数论之间的关系。要访问该信息提取每篇文章,请访问: