之间凍結線 (天文物理)和类地行星相似
凍結線 (天文物理)和类地行星有(在联盟百科)8共同点: 太阳系,太陽星雲,微行星,熱力學溫標,類木行星,行星,氢,水。
太阳系
太陽系Capitalization of the name varies.
太陽星雲
太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.
微行星
微行星被認為是存在於原行星盤和岩屑盤內的固態物體。 一種被廣為接受的行星形成理論是維克托·薩夫羅諾夫(Viktor Safronov)的微行星假說,說明行星的形成是由微小的塵埃顆粒經由不斷的碰撞和黏合,形成越來越大的個體。當這個個體的直徑達到大約1公里的大小,就可以直接經由相互間的重力吸引,更快地形成月球尺度的原行星,成為龐然大物。這就是微行星如何經常被定義的。比微行星小的物體依賴布朗運動或是氣體中的湍流運動,使彼此間能發生足以導致黏合的碰撞。還有,微行星也可能在原行星盤的盤面中段塵埃顆粒密集成層的區域,因為經歷重力的不穩定而聚集。許多的微行星會因為劇烈的撞擊而破碎,但是一些最大的微行星可能經歷這個階段後仍能存在並繼續增長成為原行星,然後成為行星。 一般相信這個時期大約在38億年前,在經歷了後期重轟炸期的階段之後,大部分在太陽系內的微行星不是完全被拋出太陽系外,就是進入距離異常遙遠的軌道,例如歐特雲,或是被來自類木行星(特別是木星和海王星)規則的重力輕輕的推送而與更大的物體碰撞。少數的微行星可能被捕獲成為衛星,像是火衛一和火衛二,以及類木行星許多高傾角的衛星。 到今天仍然存在的微行星對科學家是非常有價值的,因為它們蘊含了有關我們的太陽系誕生時的訊息。雖然它們的外表的化學組成可能已經被強烈的太陽輻射改變,但內部的成分基本上仍是微行星形成時未被碰觸過的原始物質。這使每個微行星都像“時間膠囊”,它們的結構能告訴我們太陽星雲以及我們的行星系統形成時的條件。 參考隕石和彗星。.
熱力學溫標
#重定向 热力学温标.
凍結線 (天文物理)和熱力學溫標 · 熱力學溫標和类地行星 ·
類木行星
#重定向 氣態巨行星.
行星
行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.
凍結線 (天文物理)和行星 · 类地行星和行星 ·
氢
氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.
凍結線 (天文物理)和氢 · 氢和类地行星 ·
水
水(化学式:H2O)是由氢、氧两种元素组成的无机物,在常温常压下为无色无味的透明液体。水是地球上最常见的物质之一,是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。水在生命演化中起到了重要的作用。人类很早就开始对水产生了认识,东西方古代朴素的物质观中都把水视为一种基本的组成元素,水是中國古代五行之一。人體有百分之七十是水。.
凍結線 (天文物理)和水 · 水和类地行星 ·
上面的列表回答下列问题
- 什么凍結線 (天文物理)和类地行星的共同点。
- 什么是凍結線 (天文物理)和类地行星之间的相似性
凍結線 (天文物理)和类地行星之间的比较
凍結線 (天文物理)有15个关系,而类地行星有75个。由于它们的共同之处8,杰卡德指数为8.89% = 8 / (15 + 75)。
参考
本文介绍凍結線 (天文物理)和类地行星之间的关系。要访问该信息提取每篇文章,请访问: