我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

内部和内部代数

快捷方式: 差异相似杰卡德相似系数参考

内部和内部代数之间的区别

内部 vs. 内部代数

数学上,特别是在拓扑学中,拓扑空间内点集 S 的内部(interior,又稱開核 open kernel)含有所有直观上“不在 S 的边界上”的 S 的点。S 的内部中的点称为 S 的内点。 等价地,S 的内部是 S 补集的闭包的补集。内部的概念在很多情况下和闭包的概念对偶。 一个集合的外部是它补集的内部,等同于它闭包的补集;它包含既不在集合内,也不在边界上的点。一个子集的内部、边界和外部一同将整个空间分为三块(或者更少,因為這三者有可能是空集)。内部和外部总是开的,而边界总是闭的。没有内部的集合叫做边缘集。. 在抽象代数中,内部代数是采用了集合的拓扑内部概念的特定类型的代数结构。内部代数之对于拓扑和模态逻辑 S4 如同布尔代数之对于集合论和普通命题逻辑。内部代数形成了模態代數的一个簇。.

之间内部和内部代数相似

内部和内部代数有(在联盟百科)9共同点: 密着拓扑开集当且仅当离散空间补集闭集邻域拓扑学拓扑空间

密着拓扑

在拓扑学中,带有密着拓扑(trivial topology)的拓扑空间是其中仅有的开集是空集和整个空间的空间。这种空间有时叫做不可分空间(indiscrete space),它的拓扑有时叫做不可分拓扑。在直觉上,这有着所有点都被“粘着在一起”而通过拓扑方式不可区分的推论。.

内部和密着拓扑 · 内部代数和密着拓扑 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

内部和开集 · 内部代数和开集 · 查看更多 »

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

内部和当且仅当 · 内部代数和当且仅当 · 查看更多 »

离散空间

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。.

内部和离散空间 · 内部代数和离散空间 · 查看更多 »

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

内部和补集 · 内部代数和补集 · 查看更多 »

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

内部和闭集 · 内部代数和闭集 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

内部和邻域 · 内部代数和邻域 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

内部和拓扑学 · 内部代数和拓扑学 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

内部和拓扑空间 · 内部代数和拓扑空间 · 查看更多 »

上面的列表回答下列问题

内部和内部代数之间的比较

内部有24个关系,而内部代数有52个。由于它们的共同之处9,杰卡德指数为11.84% = 9 / (24 + 52)。

参考

本文介绍内部和内部代数之间的关系。要访问该信息提取每篇文章,请访问: