徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

共同演化和生物

快捷方式: 差异相似杰卡德相似系数参考

共同演化和生物之间的区别

共同演化 vs. 生物

在生物學上,共演化是指「一項生物學的性質因另一項生物學的性質變化而隨之變化」。共演化可以發生在許多生理學上的層次,如微觀下蛋白質中胺基酸之序列,如巨觀下不同生物的性狀變化。在共演化的過程中,一項生物對另一項生物施予天擇壓力,進而影響後者的演化過程。不同物種之間的共演化現象包括了宿主與寄主的寄生關係,以及許多隨時間生物發生突變的例子。演化的過程常與非生物因子有所關聯,如氣候變遷,但這種演化過程並不屬於共演化(因為氣候並非生物且不隨生物演化的動力而改變)。共演化出現在許多種生理間的關係,如捕食與被捕食關係、共生關係、寄生關係等,但仍有許多生物理關係則難以釐清,例如一個物種被其它多種物種影響而其中每個物種又個自受其它物種所影響。諸如此類複雜的演化過程被稱為「擴散式共演化」。簡單的來說,共同演化是一場掠食者與獵物間永無止盡的演化軍備競賽(:en:Evolutionary arms race)。共同演化也包括寄主與寄生蟲間的演化,互利共生的行為可能會在這過程中發生。 共同演化的例子包括風蘭類蘭花與非洲蛾類間的授粉關係。蛾類需要蘭花的花蜜生存,蘭花也要依靠蛾類散佈花粉以繁衍下一代。這種既競爭又互利的演化過程導致蘭花發展出極深的花冠,蛾類也相對應演化出極長的口器。 共同演化也發生於掠食者與獵物間,如粗皮渍螈(Taricha granulosa)與帶蛇(Thamnophis sirtalis)間。蠑螈會在皮膚上分泌神經毒素,而帶蛇則發展出對抗毒素的抵抗力(沒有毒素抵抗力的個體都被"選擇"掉了)。這樣的競爭演化結果導致蠑螈身上的毒素越來越毒,而帶蛇對於神經毒素的抵抗力也越來越強。 關於地球史中大尺度的生物演化,鮮有證據支持共演化參與其中,因為其中的非生物因子(如大滅絕)對大多數生物都造成了嚴重的影響。然而,在族群或物種間的共演化證據則相對充足。例如早在達爾文的著作《物種原始》及《蘭花的授粉》中已經對共演化有了簡單的描述,又如病毒及其寄主的關係也可能是許多共演化的結果。 最初,共演化只是生物學上的概念,但已經被應用至其中相似的領域,如電腦科學及宇宙學。. 生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.

之间共同演化和生物相似

共同演化和生物有(在联盟百科)12共同点: 寄生共生體學說線粒體细胞真核生物病毒生物学物种脱氧核糖核酸蛋白质氨基酸演化

寄生

寄生是指一种生物生于另一种生物的体内或体表,并从后者摄取养分以维持生活的现象。前者称寄生物,后者称宿主。 寄生物若寄住在宿主體內,稱為內寄生,例如鉤蟲寄生在動物的消化道;而那些生活在表面的稱為外寄生,例如蚊子和造成足癬(俗稱:香港腳)的黴菌、吸取其他植物養分的菟絲子;若一個寄生物會殺死宿主的,便稱為擬寄生物;另外有一種寄生形式稱為竊取性寄生,寄生物偷取宿主所捕捉的或是準備好的食物。 在定義上必須特別注意「獲利」和「被害」在寄生的關係是種族性的、血統性的,並非個體性的,因此如果一個生物體由於被感染,造成身體變得較為強壯的狀況,卻失去生殖能力(例如被扁蟲寄生的蛇類)在演化的觀點上這種生物體是被傷害的,也因此稱做被寄生物。 許多內寄生物尋找宿主是透過被動的方式達成,例如一種人類小腸內寄生虫,稱做線蟲Ascaris lumbricoides,牠從宿主的消化道排出到外在環境,必須仰賴其他人,因為衛生不良而不慎攝入。另一方面,外寄生物在這方面大多有更好的方式找尋宿主上身,例如一些水生的蛭,在附著上宿主之前會先感應移動狀況,並且透過散發的體溫和化學訊息來確認目標物。 寄生物的宿主通常也演化出良好的防禦機制:植物會製造毒素來殘害寄生真菌和細菌,當然對草食性動物也有害;脊椎動物的免疫系統可以透過體液對多數的寄生物攻擊。許多寄生物,特別是微生物,為此更演化出可以適應特定宿主物種的能力,在這樣特定的互動中,這兩種生物會共同演化出相對穩定的關係,這種狀況下,宿主就不會太快或是根本不會被殺死,因為在演化上宿主的對抗也會對寄生物造成威脅,但是別忘了有一種寄生物是會殺死宿主的,那就是先前提到過的擬寄生物(如寄生蜂)。 有時候寄生物的研究可以幫忙解決系統分類學上的問題,例如過去生物學家對於紅鶴究竟和鴨、雁類還是跟鸛鳥類血緣關係較為親近,在過去一直有很多的爭議,但是由於發現紅鶴和鴨、雁類有共同的寄生物,目前一般傾向認為這兩者的血緣關係比鸛鳥類更親近。.

共同演化和寄生 · 寄生和生物 · 查看更多 »

共生體學說

共生体學說(Symbiogenesis),也叫內共生學說(endosymbiotic theory),是關於真核生物細胞中的一些自主細胞器,線粒體和葉綠體起源的學説。根據這個學説,它們起源於共生於真核生物細胞中(之内)的原核生物。這種理論認爲線粒體起源於好氧性細菌(很可能是接近於立克次體的變形菌門細菌,特別是(Pelagibacterales)),而葉綠體源於内共生的光合自營原核生物的藍細菌。這個理論的證據非常完整,目前已經被廣泛接受。.

共同演化和共生體學說 · 共生體學說和生物 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

共同演化和線粒體 · 生物和線粒體 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

共同演化和细胞 · 生物和细胞 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

共同演化和真核生物 · 生物和真核生物 · 查看更多 »

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

共同演化和病毒 · 生物和病毒 · 查看更多 »

生物学

生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.

共同演化和生物学 · 生物和生物学 · 查看更多 »

物种

种(Species)或稱物种,生物分类的基本单位,位于生物分类法中最後一级,在属之下。較為籠統的概念,是指一群或多或少与其它这样的群体形态相同,並能够交配繁殖出具生殖能力後代的相关生物群体。以演化生物學家恩斯特·麥爾的定义来说,物种是:「能够(或可能)相互配育的自然种群的类群,这些类群与其它这样的类群在生殖上相互隔离着。」昆虫学家陈世骧(1978)对物种所下定义为:「物种是繁殖单元,由又连续又间断的居群所组成;物种是进化单元,是生物系统线上的基本环节,是分类的基本单元。」。 在分类学中,一个物种被赋予一个拉丁化的雙名法名称。该名称使用斜体印刷,手写时则加上底線;属名首字母大写,屬名之後紧跟一个唯一的形容词,這個詞稱為種小名或種加詞,其首字母不可大寫。只有完整的双名制名称才称为「种名」,而非仅仅是双名制名称的第二个部分。例如人的种名叫Homo sapiens(智人),而不是sapiens。 物种也是演化和生物多样性的基本单元。.

共同演化和物种 · 物种和生物 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

共同演化和脱氧核糖核酸 · 生物和脱氧核糖核酸 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

共同演化和蛋白质 · 生物和蛋白质 · 查看更多 »

氨基酸

胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.

共同演化和氨基酸 · 氨基酸和生物 · 查看更多 »

演化

--(evolution),指的是生物的可遺傳性狀在世代間的改變,操作定義是種群內基因頻率的改變。基因在繁殖過程中,會經複製並傳遞到子代。而基因的突变可使性狀改變,進而造成個體之間的遺傳變異。新性狀又會因為物種迁徙或是物種之間的水-平-基因轉移,而隨著基因在族群中傳遞。當這些遺傳變異受到非隨機的自然选择或隨機的遺傳漂變影響,而在族群中變得較為普遍或稀有時,就是演化。演化會引起生物各個層次的多樣性,包括物種、生物個體和分子 。 地球上所有生命的共同起源,約35-38億年前出現,其被稱為最後共同祖先,但是2015年一項在西澳的古老岩石進行的研究中發現41億年前「的行跡」。 新物種(物種形成)、種內的變化()和物種的消失(絕種)在整個地球的不斷發生,這被形態學和生化性狀證實,其中包括共同的DNA序列,這些共同性狀在物種之間更相似,因為它源於最近的共同祖先,並且可以作為進化關係的依據建立生命之樹(系统发生学),其利用現有的物種和化石建立,化石記錄的事物包括由的石墨 、,以至多細胞生物的化石。生物多樣性的現有模式被物種形成和滅絕塑造。據估計,曾經生活在地球上的物種99%以上已經滅絕。地球目前的物種估計有1000萬至1400萬。其中約120萬已被記錄。 物種是指一群可以互相進行繁殖行為的個體。當一個物種分離成各個交配行為受到阻礙的不同族群時,再加上突變、遺傳漂變,與不同環境對於不同性狀的青睞,會使變異逐代累積,進而產生新的物種。生物之間的相似性顯示所有已知物種皆是從共同祖先或是祖先基因池逐漸分化產生。 以自然選擇為基礎的演化理論,最早是由查爾斯·達爾文與亞爾佛德·羅素·華萊士所提出,詳細闡述出現在達爾文出版於1859年的《物種起源》.

共同演化和演化 · 演化和生物 · 查看更多 »

上面的列表回答下列问题

共同演化和生物之间的比较

共同演化有59个关系,而生物有90个。由于它们的共同之处12,杰卡德指数为8.05% = 12 / (59 + 90)。

参考

本文介绍共同演化和生物之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »