之间六面體和雙三角錐相似
六面體和雙三角錐有(在联盟百科)5共同点: 三角形,三方偏方面體,几何学,雙三角錐,正多面體。
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
三方偏方面體
在幾何學中,三方偏方面體(Trigonal Trapezohedron)又稱為三角鳶形多面體(Trigonal Deltohedron)或雙反三角錐(Trigonal Antidipyramid)是一個由六個全等的菱形組成的立體圖形,是六面體的一種,亦是平行六面體的特例,因其可視為由六個全等且等邊長的平行四邊形所組成。因為所有的邊緣都必須具有相同的長度,因此每一個三方偏方面體也是鳶形多面體。 三方偏方面體是最簡單的偏方面體無窮序列(即:三方偏方面體、四方偏方面體、五方、六方、七方......)即最簡單的雙錐體對偶多面體的無窮序列(二方偏方面體已退化為四面體)。 若三方偏方面體組成的菱形不只等邊且等角,此種三方偏方面體就是一個正六面體,即正方體或立方體,因為其面為正方形,因此若三方偏方面體的面維正方形就會是正多面體,反之,立方體就是三方偏方面體中的一個特例。.
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
雙三角錐
在幾何學中,雙三角錐是一種基底為三角形的雙錐體,其為三角柱的對偶。若每個面皆為正三角形,則為92種Johnson多面體(J12)中的其中一個,也是雙角錐的其中一種。顧名思義,它可由正多面體中的兩個大小相同的正四面體組合而成。這92種詹森多面體最早在1996年由(Norman Johnson)命名並給予描述。 若不考慮每個面皆為正三角形,只考慮基底為正三角形時,則有可能為廣義的半正多面體的對偶,正三角柱的對偶,此時能使用施萊夫例符號表示,計為 + ,而在考克斯特符號中,則可以用或表示。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
上面的列表回答下列问题
- 什么六面體和雙三角錐的共同点。
- 什么是六面體和雙三角錐之间的相似性
六面體和雙三角錐之间的比较
六面體有23个关系,而雙三角錐有21个。由于它们的共同之处5,杰卡德指数为11.36% = 5 / (23 + 21)。
参考
本文介绍六面體和雙三角錐之间的关系。要访问该信息提取每篇文章,请访问: