我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

公理系统和高阶逻辑

快捷方式: 差异相似杰卡德相似系数参考

公理系统和高阶逻辑之间的区别

公理系统 vs. 高阶逻辑

数学上,一个公理系统(或称公理化系统,公理体系,公理化体系)是一个公理的集合,从中一些或全部公理可以一併用來逻辑地导出定理。一个数学理论由一个公理系统和所有它导出的定理组成。一个完整描述出来的公理系统是形式系统的一个特例;但是通常完全形式化的努力僅带来在确定性上递减的收益,并让人更加難以阅读。所以,公理系统的讨论通常只是半形式化的。一个形式化理论通常表示一个公理系统,例如在模型论中表述的那样。一个形式化证明是一个证明在形式化系统中的表述。. 在数学中,高阶逻辑在很多方面有别于一阶逻辑。 其一是变量类型出现在量化中;粗略的说,一阶逻辑中禁止量化谓词。允许这么做的系统请参见二阶逻辑。 高阶逻辑区别于一阶逻辑的其他方式是在构造中允许下层的类型论。高阶谓词是接受其他谓词作为参数的谓词。一般的,阶为n的高阶谓词接受一个或多个(n − 1)阶的谓词作为参数,这里的n > 1。对高阶函数类似的评述也成立。 高阶逻辑更加富有表达力,但是它们的性质,特别是有关模型论的,使它们对很多应用不能表现良好。作为哥德尔的结论,经典高阶逻辑不容许(递归的公理化的)可靠的和完备的证明演算;这个缺陷可以通过使用Henkin模型来修补。 高阶逻辑的一个实例是构造演算。.

之间公理系统和高阶逻辑相似

公理系统和高阶逻辑有(在联盟百科)3共同点: 完备性模型论数学

完备性

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。.

公理系统和完备性 · 完备性和高阶逻辑 · 查看更多 »

模型论

数学上,模型论(Model theory)是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。 比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如。若我们在该语言中问"∃ y (y × y.

公理系统和模型论 · 模型论和高阶逻辑 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

公理系统和数学 · 数学和高阶逻辑 · 查看更多 »

上面的列表回答下列问题

公理系统和高阶逻辑之间的比较

公理系统有27个关系,而高阶逻辑有15个。由于它们的共同之处3,杰卡德指数为7.14% = 3 / (27 + 15)。

参考

本文介绍公理系统和高阶逻辑之间的关系。要访问该信息提取每篇文章,请访问: