之间八面體隕鐵和鐵隕石相似
八面體隕鐵和鐵隕石有(在联盟百科)12共同点: 合金,小行星,六面體隕鐵,石墨,無紋隕鐵,鎳紋石,魏德曼花紋,錐紋石,钴,铁,镍,镓。
合金
合金,就是两种或两种以上化学物质(至少有一组分为金属)混合而成具有金属特性的物质,一般由各组分熔合成均匀的液体,再经冷凝而得。 合金至少會以下三種中的一種:元素形成的單一相固態溶液,許多金屬相形成的混合物,金屬形成的金屬互化物。固態溶液的合金其有單一相,部份為溶液的合金則是有二相或二相以上,其分佈可能是勻相,也可能不是勻相,依材料冷卻過程的溫度變化而定。金屬互化物一般會有一種合金或純金屬包在另一種純金屬內。 由於合金一些特性比純金屬元素要好,因此會用在特定的應用中。合金的例子包括鋼、銲料、黃銅、、磷青銅及汞齊等。 合金的成份一般是以質量比例來計算。合金依其原子組成的方式,可以區分為替代合金或间质合金,又可以進一步區分為勻相(只有一相)、非勻相(不止一相)及金屬互化物(兩相之間沒有明顯的邊界)。.
小行星
小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.
六面體隕鐵
六面體隕鐵是鐵隕石結構分類的一種。它們的組成幾乎完全是鐵-鎳合金的錐紋石,而且鎳的含量比八面體隕鐵為低。六面體隕鐵中的鎳濃度始終低於5.8%,而低於5.3%則非常罕見。 這個名稱来自錐紋石晶體的立方結構(即六面體)。 在蝕刻之後,六面體隕鐵不會呈現魏德曼花紋,但是會有諾伊曼線:以不同角度彼此交叉的平行線,顯示出母體曾受到撞擊而產生的激波。這些線是因為約翰·諾伊曼在1848年發現而得名的。.
八面體隕鐵和六面體隕鐵 · 六面體隕鐵和鐵隕石 ·
石墨
石墨(Graphite),又稱黑鉛(Black Lead),是碳的一種同素異形體(碳的其他同素異形體有很多,為人熟悉的例如鑽石)。作为最軟的礦物之一,石墨不透明且觸感油膩,顏色由鐵黑到鋼鐵灰不等,形狀可呈晶體狀、薄片狀、鱗狀、條紋狀、層狀體,或散佈在變質岩(由煤、碳質岩石或碳質沉積物,受到區域變質作用或是岩漿侵入作用形成)之中。化学性质不活泼,具有耐腐蚀性。.
無紋隕鐵
無紋隕鐵是鐵隕石的一種,它的主要成分是鐵鎳合金、鎳紋石,也包含有合紋石、隕硫鐵和用顯微鏡才能看見的錐紋石薄片,但沒有可見的魏德曼花紋。無紋隕鐵是鎳含量最高的隕石,含量都在18%以上。高鎳含量是不能發展出魏德曼花紋的原因,因為錐紋石只有在較低的溫度(大約600℃以下)才能從鎳紋石中熔出,而此時擴散的速率已經太慢 它們是稀有的種類,被觀測到的鐵隕石中,無紋隕鐵只有大約50顆。即使如此,最大的隕石(1920年發現的霍巴隕鐵,重達60公噸。)卻屬於此類。許多的無紋隕鐵在化學群組分類屬於IVB,已有13顆屬於此分類。最新的是1994年在德州發現,重27公斤的杜蒙特隕鐵 。.
八面體隕鐵和無紋隕鐵 · 無紋隕鐵和鐵隕石 ·
鎳紋石
鎳紋石是一種可以在鐵隕石中發現礦物,是鐵和鎳的合金,其中鐵佔79.19%而鎳佔20.81%。鎳紋石外表呈現灰色,有金屬光澤,摩爾質量約56.42,密度8g/cm³ ,硬度介於5到5.5之間。.
魏德曼花紋
魏德曼花紋也稱為湯姆森結構,是在八面體隕鐵的鐵隕石和一些橄欖隕鐵中發現獨特的長鎳-鐵結晶,它們包括一些交織的錐紋石和鎳紋石形成的帶狀物,稱為lamellæ。通常,在殼層的空隙中會發現由錐紋石和鎳紋石混合構成,稱為合紋石的微小顆粒。.
八面體隕鐵和魏德曼花紋 · 鐵隕石和魏德曼花紋 ·
錐紋石
錐紋石,又稱為鐵紋石,是一種鐵-鎳合金的礦物,通常其比例為90:10至95:5,或許還有鈷或碳的雜質存在其中。在地球表面,只有在隕石才會自然出現這種合金。它有金屬的光澤,顏色為灰色,雖然有等軸晶的六面體的結構,但沒有明確的解理。他的密度大約在8 g/cm³ ,摩氏硬度為 4,有時就稱為鐵鎳隕石(balkeneisen)。 錐紋石的名稱在1861年被提出,源自希臘文kamask,其意義為板條或束。它是鐵隕石的主要成分(八面體隕鐵和六面體隕鐵的類型)。在八面體隕鐵,它會與鎳紋石交織形成魏德曼花紋;在六面體隕鐵,則經常會形成微細、平行的諾伊曼線,這是一種變形的結構,是相鄰的錐紋石板在撞擊中產生激波的證據。 有時,會發現錐紋石和鎳紋石緊密的混合在一起形成合紋石,很難以目視區分出來。紀錄上最大的錐紋石晶體經測量為92x54x23 cm3。 參見:礦物列表.
钴
钴是一种化学元素,符号为Co,原子序数27,属过渡金属,铁系元素之一,具有磁性。鈷礦主要為砷化物、氧化物和硫化物。此外,放射性的鈷-60同位素可進行癌症治療。.
铁
铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.
镍
是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.
镓
镓(Gallium,舊譯作鉫、錁)是一种化学元素,它的化学符号是Ga,原子序数是31,是一种貧金屬。 在自然界中常以微量分散于铝矾土矿、闪锌矿等矿石中。.
上面的列表回答下列问题
- 什么八面體隕鐵和鐵隕石的共同点。
- 什么是八面體隕鐵和鐵隕石之间的相似性
八面體隕鐵和鐵隕石之间的比较
八面體隕鐵有19个关系,而鐵隕石有29个。由于它们的共同之处12,杰卡德指数为25.00% = 12 / (19 + 29)。
参考
本文介绍八面體隕鐵和鐵隕石之间的关系。要访问该信息提取每篇文章,请访问: