我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

全集和笛卡儿积

快捷方式: 差异相似杰卡德相似系数参考

全集和笛卡儿积之间的区别

全集 vs. 笛卡儿积

数学上,特别是在集合论和数学基础的应用中,全类(若是集合,则为全集)大约是这样一个类,它(在某种程度上)包含了所有的研究对象和集合。. 在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

之间全集和笛卡儿积相似

全集和笛卡儿积有(在联盟百科)9共同点: 实数并集交集空集类 (数学)自然数集合有序对数学

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

全集和实数 · 实数和笛卡儿积 · 查看更多 »

并集

在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.

全集和并集 · 并集和笛卡儿积 · 查看更多 »

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

交集和全集 · 交集和笛卡儿积 · 查看更多 »

空集

集是不含任何元素的集合,數學符號為\empty、\varnothing或\。.

全集和空集 · 空集和笛卡儿积 · 查看更多 »

类 (数学)

在集合論及其數學應用中,類是由集合(或其他數學物件)的搜集(collection),可以依所有成員所共享的性質被無歧定義。有些類是集合(例如由所有偶數構成的類),但有些則不是(如所有序數所構成的類或所有集合所構成的類)。一個不是集合的類被稱之為真類。一个是集合的类被称为“小类”。 在數學裡,有許多物件對集合而言太大,而必須以類來描述,像是大的範疇和超實數的類體之類等。要證明一給定「事物」為一真類,一般的做法是證明此一「事物」至少有著如序數一般多的元素。有關此一證明的例子,請參見。 真類不能是一個集合或者是一個類的元素,而且不受ZF集合論中的公理所限制;因此避免掉了許多樸素集合論中的悖論。反而,這些悖論成了證明某一個類是否為真類的方法之一。例如,羅素悖論可以證明由所有不包含集合自身的集合所構成的類是一個真類,而布拉利-福尔蒂悖论則可證明所有序數所構成的類是一個真類。 標準的ZF集合論公理不會論及到類;而在元語言中,類只作為邏輯公式的等價類而存在。馮諾伊曼-博內斯-哥德爾集合論則採取了另一種方式;類在此一理論中是基礎的物件,而集合則被定義為可以是其他某些類的元素的類。真類,則為不可以是其他任何類的元素的類。 在其他集合論如新基础集合论或半集合的理論中,「真類」的概念依然是有意義的(不是任一堆事物都會是集合),但對集合特質的認定並非依據其大小。例如,所有包含全集的集合論都會有個是集合的子類的真類。 「類」這一詞有時會和「集合」同義,最為人知的是「等價類」這一術語。這種用法是因為從前對類和集合不如現今一樣地區別的緣故。許多19世紀之前對「類」的討論提及的實際上是集合,又或者會是個更為模糊的概念。.

全集和类 (数学) · 笛卡儿积和类 (数学) · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

全集和自然数 · 笛卡儿积和自然数 · 查看更多 »

集合

集合可以指:.

全集和集合 · 笛卡儿积和集合 · 查看更多 »

有序对

在数学中,有序对是两个对象的搜集,使得可以区分出其中一个是“第一个元素”而另一个是“第二个元素”(第一个元素和第二个元素也叫做左投影和右投影)。带有第一个元素a和第二个元素b的有序对通常写为(a, b)。 符号(a, b)也表示在实数轴上的开区间;在有歧义的场合可使用符号\langle a,b\rangle。.

全集和有序对 · 有序对和笛卡儿积 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

全集和数学 · 数学和笛卡儿积 · 查看更多 »

上面的列表回答下列问题

全集和笛卡儿积之间的比较

全集有50个关系,而笛卡儿积有28个。由于它们的共同之处9,杰卡德指数为11.54% = 9 / (50 + 28)。

参考

本文介绍全集和笛卡儿积之间的关系。要访问该信息提取每篇文章,请访问: